1,045 research outputs found

    Coherent wave-packet evolution in coupled bands

    Full text link
    We develop a formalism for treating coherent wave-packet dynamics of charge and spin carriers in degenerate and nearly degenerate bands. We consider the two-band case carefully in view of spintronics applications, where transitions between spin-split bands often occur even for relatively weak electromagnetic fields. We demonstrate that much of the semiclassical formalism developed for the single-band case can be generalized to multiple bands, and examine the nontrivial non-Abelian corrections arising from the additional degree of freedom. Along with the center of mass motion in crystal momentum and real space, one must also include a pseudo-spin to characterize the dynamics between the bands. We derive the wave packet energy up to the first order gradient correction and obtain the equations of motion for the real- and kk-space center of the wave-packet, as well as for the pseudo-spin. These equations include the non-Abelian Berry curvature terms and a non-Abelian correction to the group velocity. As an example, we apply our formalism to describe coherent wave-packet evolution under the action of an electric field, demonstrating that it leads to electrical separation of up and down spins. A sizable separation will be observed, with a large degree of tunability, making this mechanism a practical method of generating a spin polarization. We then turn our attention to a magnetic field, where we recover Larmor precession, which cannot be obtained from a single-band point of view. In this case, the gradient energy correction can be regarded as due to a magnetic moment from the self-rotation of the wave-packet, and we calculate its value for the light holes in the spherical four-band Luttinger model.Comment: 8 pages, 1 figur

    A multiband envelope function model for quantum transport in a tunneling diode

    Full text link
    We present a simple model for electron transport in semiconductor devices that exhibit tunneling between the conduction and valence bands. The model is derived within the usual Bloch-Wannier formalism by a k-expansion, and is formulated in terms of a set of coupled equations for the electron envelope functions. Its connection with other models present in literature is discussed. As an application we consider the case of a Resonant Interband Tunneling Diode, demonstrating the ability of the model to reproduce the expected behaviour of the current as a function of the applied voltageComment: 8 pages, 4 figure

    A semi-quantitative scattering theory of amorphous materials

    Full text link
    It is argued that topological disorder in amorphous solids can be described by local strains related to local reference crystals and local rotations. An intuitive localization criterion is formulated from this point of view. The Inverse Participation Ratio and the location of mobility edges in band tails is directly related to the character of the disorder potential in amorphous solid, the coordination number, the transition integral and the nodes of wave functions of the corresponding reference crystal. The dependence of the decay rate of band tails on temperature and static disorder are derived. \textit{Ab initio} simulations on a-Si and experiments on a-Si:H are compared to these predictions.Comment: 4 pages, 2 figures, will be submitted to Phys. Rev. Let

    A priori Wannier functions from modified Hartree-Fock and Kohn-Sham equations

    Full text link
    The Hartree-Fock equations are modified to directly yield Wannier functions following a proposal of Shukla et al. [Chem. Phys. Lett. 262, 213-218 (1996)]. This approach circumvents the a posteriori application of the Wannier transformation to Bloch functions. I give a novel and rigorous derivation of the relevant equations by introducing an orthogonalizing potential to ensure the orthogonality among the resulting functions. The properties of these, so-called a priori Wannier functions, are analyzed and the relation of the modified Hartree-Fock equations to the conventional, Bloch-function-based equations is elucidated. It is pointed out that the modified equations offer a different route to maximally localized Wannier functions. Their computational solution is found to involve an effort that is comparable to the effort for the solution of the conventional equations. Above all, I show how a priori Wannier functions can be obtained by a modification of the Kohn-Sham equations of density-functional theory.Comment: 7 pages, RevTeX4, revise

    Quasiparticle band structure of infinite hydrogen fluoride and hydrogen chloride chains

    Full text link
    We study the quasiparticle band structure of isolated, infinite HF and HCl bent (zigzag) chains and examine the effect of the crystal field on the energy levels of the constituent monomers. The chains are one of the simplest but realistic models of the corresponding three-dimensional crystalline solids. To describe the isolated monomers and the chains, we set out from the Hartree-Fock approximation, harnessing the advanced Green's function methods "local molecular orbital algebraic diagrammatic construction" (ADC) scheme and "local crystal orbital ADC" (CO-ADC) in a strict second order approximation, ADC(2,2) and CO-ADC(2,2), respectively, to account for electron correlations. The configuration space of the periodic correlation calculations is found to converge rapidly only requiring nearest-neighbor contributions to be regarded. Although electron correlations cause a pronounced shift of the quasiparticle band structure of the chains with respect to the Hartree-Fock result, the bandwidth essentially remains unaltered in contrast to, e.g., covalently bound compounds.Comment: 11 pages, 6 figures, 6 tables, RevTeX4, corrected typoe

    Generalized acceleration theorem for spatiotemporal Bloch waves

    Full text link
    A representation is put forward for wave functions of quantum particles in periodic lattice potentials subjected to homogeneous time-periodic forcing, based on an expansion with respect to Bloch-like states which embody both the spatial and the temporal periodicity. It is shown that there exists a generalization of Bloch's famous acceleration theorem which grows out of this representation and captures the effect of a weak probe force applied in addition to a strong dressing force. Taken together, these elements point at a "dressing and probing" strategy for coherent wave-packet manipulation, which could be implemented in present experiments with optical lattices.Comment: 12 pages, 4 figure

    Atomic correlations in itinerant ferromagnets: quasi-particle bands of nickel

    Full text link
    We measure the band structure of nickel along various high-symmetry lines of the bulk Brillouin zone with angle-resolved photoelectron spectroscopy. The Gutzwiller theory for a nine-band Hubbard model whose tight-binding parameters are obtained from non-magnetic density-functional theory resolves most of the long-standing discrepancies between experiment and theory on nickel. Thereby we support the view of itinerant ferromagnetism as induced by atomic correlations.Comment: 4 page REVTeX 4.0, one figure, one tabl

    Calculation of nanowire thermal conductivity using complete phonon dispersion relations

    Full text link
    The lattice thermal conductivity of crystalline Si nanowires is calculated. The calculation uses complete phonon dispersions, and does not require any externally imposed frequency cutoffs. No adjustment to nanowire thermal conductivity measurements is required. Good agreement with experimental results for nanowires wider than 35 nm is obtained. A formulation in terms of the transmission function is given. Also, the use of a simpler, nondispersive "Callaway formula", is discussed from the complete dispersions perspective.Comment: 4 pages, 3 figures. Accepted in Phys. Rev.

    A Liquid Model Analogue for Black Hole Thermodynamics

    Get PDF
    We are able to characterize a 2--dimensional classical fluid sharing some of the same thermodynamic state functions as the Schwarzschild black hole. This phenomenological correspondence between black holes and fluids is established by means of the model liquid's pair-correlation function and the two-body atomic interaction potential. These latter two functions are calculated exactly in terms of the black hole internal (quasilocal) energy and the isothermal compressibility. We find the existence of a ``screening" like effect for the components of the liquid.Comment: 20 pages and 6 Encapsulated PostScript figure

    Resonant Impurity Scattering in a Strongly Correlated Electron Model

    Full text link
    Scattering by a single impurity introduced in a strongly correlated electronic system is studied by exact diagonalization of small clusters. It is shown that an inert site which is spinless and unable to accomodate holes can give rise to strong resonant scattering. A calculation of the local density of state reveals that, for increasing antiferromagnetic exchange coupling, d, s and p-wave symmetry bound states in which a mobile hole is trapped by the impurity potential induced by a local distortion of the antiferromagnetic background successively pull out from the continuum.Comment: 10 pages, 4 figures available on request, report LPQTH-93-2
    • …
    corecore