176 research outputs found

    Whitening of the Quark-Gluon Plasma

    Full text link
    Parton-parton collisions do not neutralize local color charges in the quark-gluon plasma as they only redistribute the charges among momentum modes. We discuss color diffusion and color conductivity as the processes responsible for the neutralization of the plasma. For this purpose, we first compute the conductivity and diffusion coefficients in the plasma that is significantly colorful. Then, the time evolution of the color density due to the conductivity and diffusion is studied. The conductivity is shown to be much more efficient than the diffusion in neutralizing the plasma at the scale longer than the screening length. Estimates of the characteristic time scales, which are based on close to global equilibrium computations, suggest that first the plasma becomes white and then the momentum degrees of freedom thermalize.Comment: 9 pages, revised, to appear in Phys. Rev.

    Thermalization vs. Isotropization & Azimuthal Fluctuations

    Full text link
    Hydrodynamic description requires a local thermodynamic equilibrium of the system under study but an approximate hydrodynamic behaviour is already manifested when a momentum distribution of liquid components is not of equilibrium form but merely isotropic. While the process of equilibration is relatively slow, the parton system becomes isotropic rather fast due to the plasma instabilities. Azimuthal fluctuations observed in relativistic heavy-ion collisions are argued to distinguish between a fully equilibrated and only isotropic parton system produced in the collision early stage.Comment: 12 pages, presented at `Correlations and Fluctuations in Relativistic Nuclear Collisions', MIT, April 05, minor correction

    Fluctuating initial conditions in heavy-ion collisions from the Glauber approach

    Full text link
    In the framework of the Glauber approach we analyze the shape parameters of the early-formed system and their event-by-event fluctuations. We test a variety of models: the conventional wounded nucleon model, a model admixing binary collisions to the wounded nucleons, a model with hot spots, as well as the hot-spot model where the deposition of energy occurs with a superimposed probability distribution. We look in detail at the so-called participant multipole moments, obtained by an averaging procedure where in each event the system is translated to its center of mass and aligned with the major principal axis of the ellipse of inertia. Quantitative comparisons indicate substantial relative effects for eccentricity in variants of Glauber models. On the other hand, the dependence of the scaled standard deviation of the participant eccentricity on the chosen model is weak. For all models the values range from about 0.5 for the central collisions to about 0.3-0.4 for peripheral collisions, both for the gold-gold and copper-copper collisions. They are dominated by statistics and change only by 10-15% from model to model. We provide an approximate analytic expansion for the multipole moments and their fluctuations given in terms of the fixed-axes moments. For central collisions and in the absence of correlations it gives the simple formula for the scaled standard deviation of the participant eccentricity: sqrt(4/pi-1). Similarly, we obtain expansions for the radial profiles of the multipole distributions. We investigate the relevance of the shape-fluctuation effects for jet quenching and find them important only for very central events. Finally, we argue how smooth hydro leads to the known result v_4 ~ v_2^2, and further to the prediction Delta v_4/v_4 = 2 Delta v_2/v_2.Comment: 20 pages, 15 figures, additions include comparison to the CGC result

    Local equilibrium of the quark-gluon plasma

    Full text link
    Within kinetic theory, we look for local equilibrium configurations of the quark-gluon plasma by maximizing the local entropy. We use the well-established transport equations in the Vlasov limit, supplemented with the Waldmann-Snider collision terms. Two different classes of local equilibrium solutions are found. The first one corresponds to the configurations that comply with the so-called collisional invariants. The second one is given by the distribution functions that cancel the collision terms, representing the most probable binary interactions with soft gluon exchange in the t-channel. The two sets of solutions agree with each other if we go beyond these dominant processes and take into account subleading quark-antiquark annihilation/creation and gluon number non-conserving processes. The local equilibrium state appears to be colorful, as the color charges are not locally neutralized. Properties of such an equilibrium state are analyzed. In particular, the related hydrodynamic equations of a colorful fluid are derived. Possible neutralization processes are also briefly discussed.Comment: 20 pages; minor changes, to be published in Phys. Rev.

    Quantum mechanics of baryogenesis

    Get PDF
    The cosmological baryon asymmetry can be explained as remnant of heavy Majorana neutrino decays in the early universe. We study this out-of-equilibrium process by means of Kadanoff-Baym equations which are solved in a perturbative expansion. To leading order the problem is reduced to solving a set of Boltzmann equations for distribution functions.Comment: 12 pages, 2 figures, typos corrected. To be published in Physics Letter

    Measuring charge fluctuations in high-energy nuclear collisions

    Get PDF
    Various measures of charge fluctuations in heavy-ion collisions are discussed. Advantages of the Phi-measure are demonstrated and its relation to other fluctuation measures is established. To get the relation, Phi is expressed through the moments of multiplicity distribution. We study how the measures act in the case of a `background' model which represents the classical hadron gas in equilibrium. The model assumes statistical particle production constrained by charge conservation. It also takes into account both the effect of incomplete experimental apparatus acceptance and that of tracking inefficiency. The model is shown to approximately agree with the PHENIX and preliminary STAR data on the electric charge fluctuations. Finally, `background-free' measures are discussed.Comment: 12 pages, 6 figures, numerous but minor changes, Phys. Rev. C in prin

    Entropy production by resonance decays

    Get PDF
    We investigate entropy production for an expanding system of particles and resonances with isospin symmetry -- in our case pions and ρ\rho mesons -- within the framework of relativistic kinetic theory. A cascade code to simulate the kinetic equations is developed and results for entropy production and particle spectra are presented.Comment: 17 pages, 10 ps-figures included, only change: preprint number adde

    Early dynamics of transversally thermalized matter

    Full text link
    We argue that the idea that the parton system created in relativistic heavy-ion collisions is formed in a state with transverse momenta close to thermodynamic equilibrium and its subsequent dynamics at early times is dominated by pure transverse hydrodynamics of the perfect fluid is compatible with the data collected at RHIC. This scenario of early parton dynamics may help to solve the problem of early equilibration.Comment: 4 pages, 2 figures, Talk given by M. Chojnacki at Quark Matter 2008, Jaipur, Indi

    Measuring subdiffusion parameters

    Full text link
    We propose a method to extract from experimental data the subdiffusion parameter α\alpha and subdiffusion coefficient DαD_\alpha which are defined by means of the relation =2Dα/Γ(1+α)tα =2D_\alpha/\Gamma(1+\alpha) t^\alpha where denotes a mean square displacement of a random walker starting from x=0x=0 at the initial time t=0t=0. The method exploits a membrane system where a substance of interest is transported in a solvent from one vessel to another across a thin membrane which plays here only an auxiliary role. Using such a system, we experimentally study a diffusion of glucose and sucrose in a gel solvent. We find a fully analytic solution of the fractional subdiffusion equation with the initial and boundary conditions representing the system under study. Confronting the experimental data with the derived formulas, we show a subdiffusive character of the sugar transport in gel solvent. We precisely determine the parameter α\alpha, which is smaller than 1, and the subdiffusion coefficient DαD_\alpha.Comment: 17 pages, 9 figures, revised, to appear in Phys. Rev.

    Boost Invariance and Multiplicity Dependence of the Charge Balance Functionin π+p\pi^{+}p and K+pK^{+}p Collisions at s=22\sqrt s= 22 GeV/c

    Get PDF
    Boost invariance and multiplicity dependence of the charge balance function are studied in \pi^{+}\rp and \rK^{+}\rp collisions at 250 GeV/cc incident beam momentum. Charge balance, as well as charge fluctuations, are found to be boost invariant over the whole rapidity region, but both depend on the size of the rapidity window. It is also found that the balance function becomes narrower with increasing multiplicity, consistent with the narrowing of the balance function when centrality and/or system size increase, as observed in current relativistic heavy ion experiments.Comment: 4 pages, 5 figures, Revte
    corecore