607 research outputs found
Nonlinear and spin-glass susceptibilities of three site-diluted systems
The nonlinear magnetic and spin-glass susceptibilities
in zero applied field are obtained, from tempered Monte Carlo simulations, for
three different spin glasses (SGs) of Ising spins with quenched site disorder.
We find that the relation ( is the temperature),
which holds for Edwards-Anderson SGs, is approximately fulfilled in
canonical-like SGs. For nearest neighbor antiferromagnetic interactions, on a
0.4 fraction of all sites in fcc lattices, as well as for spatially disordered
Ising dipolar (DID) systems, and appear to diverge in
the same manner at the critical temperature . However, is
smaller than by over two orders of magnitude in the diluted fcc
system. In DID systems, is very sensitive to the systems
aspect ratio. Whereas near , varies by approximately a
factor of 2 as system shape varies from cubic to long-thin-needle shapes,
sweeps over some four decades.Comment: 7 pages, 7 figure
Magnetic Transformations in the Organic Conductor kappa-(BETS)2Mn[N(CN)2]3 at the Metal-Insulator Transition
A complex study of magnetic properties including dc magnetization, 1H NMR and
magnetic torque measurements has been performed for the organic conductor
kappa-(BETS)2Mn[N(CN)2]3 which undergoes a metal-insulator transition at
T_MI~25K. NMR and the magnetization data indicate a transition in the manganese
subsystem from paramagnetic to a frozen state at T_MI, which is, however, not a
simple Neel type order. Further, a magnetic field induced transition resembling
a spin flop has been detected in the torque measurements at temperatures below
T_MI. This transition is most likely related to the spins of pi-electrons
localized on the organic molecules BETS and coupled with the manganese 3d spins
via exchange interaction.Comment: 6 pages, 5 Figures, 1 Table; Submitted to Phys.Rev.B (Nov.2010
First principles study of the multiferroics BiFeO, BiFeCrO, and BiCrO: Structure, polarization, and magnetic ordering temperature
We present results of an {\it ab initio} density functional theory study of
three bismuth-based multiferroics, BiFeO, BiFeCrO, and
BiCrO. We disuss differences in the crystal and electronic structure of
the three systems, and we show that the application of the LDA+ method is
essential to obtain realistic structural parameters for BiFeCrO. We
calculate the magnetic nearest neighbor coupling constants for all three
systems and show how Anderson's theory of superexchange can be applied to
explain the signs and relative magnitudes of these coupling constants. From the
coupling constants we then obtain a mean-field approximation for the magnetic
ordering temperatures. Guided by our comparison of these three systems, we
discuss the possibilities for designing a multiferroic material with large
magnetization above room temperature.Comment: 8 Pages, 4 Figure
Four-terminal resistance of an interacting quantum wire with weakly invasive contacts
We analyze the behavior of the four-terminal resistance, relative to the
two-terminal resistance of an interacting quantum wire with an impurity, taking
into account the invasiveness of the voltage probes. We consider a
one-dimensional Luttinger model of spinless fermions for the wire. We treat the
coupling to the voltage probes perturbatively, within the framework of
non-equilibrium Green function techniques. Our investigation unveils the
combined effect of impurities, electron-electron interactions and invasiveness
of the probes on the possible occurrence of negative resistance.Comment: 10 pages, 7 figure
Controlled switching of intrinsic localized modes in a 1-D antiferromagnet
Nearly steady-state locked intrinsic localized modes (ILMs) in the quasi-1d
antiferromagnet (C2H5NH3)2CuCl4 are detected via four-wave mixing emission or
the uniform mode absorption. Exploiting the long-time stability of these locked
ILMs, repeatable nonlinear switching is observed by varying the sample
temperature, and localized modes with various amplitudes are created by
modulation of the microwave driver power. This steady-state ILM locking
technique could be used to produce energy localization in other atomic
lattices.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Lett. v.2 :
clarifications of text and figures in response to comment
Mammographic breast density: comparison of methods for quantitative evaluation.
PURPOSE: To evaluate the results from two software tools for measurement of mammographic breast density and compare them with observer-based scores in a large cohort of women. MATERIALS AND METHODS: Following written informed consent, a data set of 36 281 mammograms from 8867 women were collected from six United Kingdom centers in an ethically approved trial. Breast density was assessed by one of 26 readers on a visual analog scale and with two automated density tools. Mean differences were calculated as the mean of all the individual percentage differences between each measurement for each case (woman). Agreement in total breast volume, fibroglandular volume, and percentage density was assessed with the Bland-Altman method. Association with observer's scores was calculated by using the Pearson correlation coefficient (r). RESULTS: Correlation between the Quantra and Volpara outputs for total breast volume was r = 0.97 (P < .001), with a mean difference of 43.5 cm(3) for all cases representing 5.0% of the mean total breast volume. Correlation of the two measures was lower for fibroglandular volume (r = 0.86, P < .001). The mean difference was 30.3 cm(3) for all cases representing 21.2% of the mean fibroglandular tissue volume result. Quantra gave the larger value and the difference tended to increase with volume. For the two measures of percentage volume density, the mean difference was 1.61 percentage points (r = 0.78, P < .001). Comparison of observer's scores with the area-based density given by Quantra yielded a low correlation (r = 0.55, P < .001). Correlations of observer's scores with the volumetric density results gave r values of 0.60 (P < .001) and 0.63 (P < .001) for Quantra and Volpara, respectively. CONCLUSION: Automated techniques for measuring breast density show good correlation, but these are poorly correlated with observer's scores. However automated techniques do give different results that should be considered when informing patient personalized imaging. (©) RSNA, 2015 Clinical trial registration no. ISRCTN 73467396.Supported by the National Institute for Health Research’s Health Technology Assessment Programme.This is the final version of the article. It first appeared at http://pubs.rsna.org/doi/full/10.1148/radiol.1414150
Thermal Casimir Force between Magnetic Materials
We investigate the Casimir pressure between two parallel plates made of
magnetic materials at nonzero temperature. It is shown that for real
magnetodielectric materials only the magnetic properties of ferromagnets can
influence the Casimir pressure. This influence is accomplished through the
contribution of the zero-frequency term of the Lifshitz formula. The
possibility of the Casimir repulsion through the vacuum gap is analyzed
depending on the model used for the description of the dielectric properties of
the metal plates.Comment: 9 pages, 3 figures. Contribution to the Proceedings of QFEXT09,
Norman, OK, September 21-25, 200
Changing times in England: the influence on geography teachers’ professional practice
School geography in England has been characterised as a pendulum swinging between policies that emphasise curriculum and pedagogy alternately. In this paper, I illustrate the influence of these shifts on geography teacher's professional practice, by drawing on three “moments” from my experience as a student, teacher and teacher educator. Barnett's description of teacher professionalism as a continuous project of “being” illuminates how geography teachers can adapt to competing influences. It reflects teacher professionalism as an unfinished project, which is responsive, but not beholden, to shifting trends, and is informed by how teachers frame and enact policies. I argue that recognising these contextual factors is key to supporting geography teachers in “being” geography education professionals. As education becomes increasingly competitive on a global scale, individual governments are looking internationally for “solutions” to improve educational rankings. In this climate, the future of geography education will rest on how teachers react locally to international trends. Geography teacher educators can support this process by continuing to inform the field through meaningful geography education research, in particular in making the contextual factors of their research explicit. This can be supported through continued successful international collaboration in geography education research
Nonlinear spin relaxation in strongly nonequilibrium magnets
A general theory is developed for describing the nonlinear relaxation of spin
systems from a strongly nonequilibrium initial state, when, in addition, the
sample is coupled to a resonator. Such processes are characterized by nonlinear
stochastic differential equations. This makes these strongly nonequilibrium
processes principally different from the spin relaxation close to an
equilibrium state, which is represented by linear differential equations. The
consideration is based on a realistic microscopic Hamiltonian including the
Zeeman terms, dipole interactions, exchange interactions, and a single-site
anisotropy. The influence of cross correlations between several spin species is
investigated. The critically important function of coupling between the spin
system and a resonant electric circuit is emphasized. The role of all main
relaxation rates is analyzed. The phenomenon of self-organization of transition
coherence in spin motion, from the quantum chaotic stage of incoherent
fluctuations, is thoroughly described. Local spin fluctuations are found to be
the triggering cause for starting the spin relaxation from an incoherent
nonequilibrium state. The basic regimes of collective coherent spin relaxation
are studied.Comment: Latex file, 31 page
- …
