575 research outputs found
Control of Epstein-Barr virus infection in vitro by T helper cells specific for virion glycoproteins
Epstein-Barr virus (EBV) establishes lifelong persistent infections in humans by latently infecting B cells, with occasional cycles of reactivation, virus production, and reinfection. Protective immunity against EBV is mediated by T cells, but the role of EBV-specific T helper (Th) cells is still poorly defined. Here, we study the Th response to the EBV lytic cycle proteins BLLF1 (gp350/220), BALF4 (gp110), and BZLF1 and show that glycoprotein-specific Th cells recognize EBV-positive cells directly; surprisingly, a much higher percentage of target cells than those expressing lytic cycle proteins were recognized. Antigen is efficiently transferred to bystander B cells by receptor-mediated uptake of released virions, resulting in recognition of target cells incubated with <1 virion/cell. T cell recognition does not require productive infection and occurs early after virus entry before latency is established. Glycoprotein-specific Th cells are cytolytic and inhibit proliferation of lymphoblastoid cell lines (LCL) and the outgrowth of LCL after infection of primary B cells with EBV. These results establish a novel role for glycoprotein-specific Th cells in the control of EBV infection and identify virion proteins as important immune targets. These findings have implications for the treatment of diseases associated with EBV and potentially other coated viruses infecting MHC class II–positive cells
First evidence of Proganochelys quenstedtii (Testudinata) from the Plateosaurus bonebeds (Norian, Late Triassic) of Frick, Canton Aargau, Switzerland
Proganochelys quenstedtii represents the best-known stem turtle from the Late Triassic, with gross anatomical and internal descriptions of the shell, postcranial bones and skull based on several well-preserved specimens from Central European fossil locations. We here report on the first specimen of P. quenstedtii from the Late Triassic (Klettgau Formation) Frickberg near the town of Frick, Canton Aargau, Switzerland. Similar to other Late Triassic ‘Plateosaurus-bearing bonebeds’, Proganochelys is considered to be a rare faunal element in the Swiss locality of Frick as well. The specimen, which is largely complete but was found only partially articulated and mixed with large Plateosaurus bones, overall resembles the morphology of the classical specimens from Germany. Despite being disarticulated, most skull bones could be identified and micro-computed tomography (CT) scanning of the posterior skull region reveals new insights into the braincase and neurovascular anatomy, as well as the inner ear region. These include the presence of a fenestra perilymphatica, potentially elongated cochlear ducts, and intense vascularization of small tubercles on the posterior end of the skull roof, which we interpret as horn cores. Other aspects of the skull in the braincase region, such as the presence or absence of a supratemporal remain ambiguous due to the fusion of individual bones and thus lack of visible sutures (externally and internally). Based on the size of the shell and fusion of individual elements, the specimen is interpreted as a skeletally mature animal
Immunodominance of Lytic Cycle Antigens in Epstein-Barr Virus-Specific CD4+ T Cell Preparations for Therapy
Epstein-Barr virus (EBV) is associated with a number of human malignancies. EBV-positive post-transplant lymphoproliferative disease in solid organ and hematopoietic stem cell transplant recipients has been successfully treated by the adoptive transfer of polyclonal EBV-specific T cell lines containing CD4+ and CD8+ T cell components. Although patients receiving T cell preparations with a higher CD4+ T cell proportion show better clinical responses, the specificity of the infused CD4+ component has remained completely unknown.
We generated LCL-stimulated T cell lines from 21 donors according to clinical protocols, and analyzed the antigen specificity of the CD4+ component in EBV-specific T cell preparations using a genetically engineered EBV mutant that is unable to enter the lytic cycle, and recombinantly expressed and purified EBV proteins. Surprisingly, CD4+ T cell lines from acutely and persistently EBV-infected donors consistently responded against EBV lytic cycle antigens and autoantigens, but barely against latent cycle antigens of EBV hitherto considered principal immunotherapeutic targets. Lytic cycle antigens were predominantly derived from structural proteins of the virus presented on MHC II via receptor-mediated uptake of released viral particles, but also included abundant infected cell proteins whose presentation involved intercellular protein transfer. Importantly, presentation of virion antigens was severely impaired by acyclovir treatment of stimulator cells, as currently performed in most clinical protocols.
These results indicate that structural antigens of EBV are the immunodominant targets of CD4+ T cells in LCL-stimulated T cell preparations. These findings add to our understanding of the immune response against this human tumor-virus and have important implications for the improvement of immunotherapeutic strategies against EBV
‘It’s just taking our souls back’: discourses of apartheid and race
Although apartheid officially ended in 1994, the issue of race as a primary identity marker has continued to permeate many aspects of private and public life in post-apartheid South Africa. This paper seeks to understand how youth at two South African tertiary institutions position themselves in relation to race and the apartheid past. Our data include four focus group interviews from two universities, one which can be described as historically ‘black’ and the other as historically ‘white’. Given the complex nature of the data, we elected to use a combination of corpus linguistics and discourse analysis as our methodological approach. We explore how words such as black, white, coloured, they, we, us and them feature in the interviews. Our analysis shows that the positioning by the interviewees reflects a complexity and ambivalence that is at times contradictory although several broader discourse patterns can be distilled. In particular, we argue, that all groups employ a range of discursive strategies so as to resist being positioned in the historical positions of ‘victim’ and ‘perpetrator’. Our paper reflects on these findings as well as what they offer us as we attempt to chart new discourses of the future.Department of HE and Training approved lis
Current whole-body MRI applications in the neurofibromatoses
ObjectivesThe Response Evaluation in Neurofibromatosis and Schwannomatosis (REiNS) International Collaboration Whole-Body MRI (WB-MRI) Working Group reviewed the existing literature on WB-MRI, an emerging technology for assessing disease in patients with neurofibromatosis type 1 (NF1), neurofibromatosis type 2 (NF2), and schwannomatosis (SWN), to recommend optimal image acquisition and analysis methods to enable WB-MRI as an endpoint in NF clinical trials.MethodsA systematic process was used to review all published data about WB-MRI in NF syndromes to assess diagnostic accuracy, feasibility and reproducibility, and data about specific techniques for assessment of tumor burden, characterization of neoplasms, and response to therapy.ResultsWB-MRI at 1.5T or 3.0T is feasible for image acquisition. Short tau inversion recovery (STIR) sequence is used in all investigations to date, suggesting consensus about the utility of this sequence for detection of WB tumor burden in people with NF. There are insufficient data to support a consensus statement about the optimal imaging planes (axial vs coronal) or 2D vs 3D approaches. Functional imaging, although used in some NF studies, has not been systematically applied or evaluated. There are no comparative studies between regional vs WB-MRI or evaluations of WB-MRI reproducibility.ConclusionsWB-MRI is feasible for identifying tumors using both 1.5T and 3.0T systems. The STIR sequence is a core sequence. Additional investigation is needed to define the optimal approach for volumetric analysis, the reproducibility of WB-MRI in NF, and the diagnostic performance of WB-MRI vs regional MRI
Stringent doxycycline-dependent control of gene activities using an episomal one-vector system
Conditional expression systems are of pivotal importance for the dissection of complex biological phenomena. Here, we describe a novel EBV-derived episomally replicating plasmid (pRTS-1) that carries all the elements for conditional expression of a gene of interest via Tet regulation. The vector is characterized by (i) low background activity, (ii) high inducibility in the presence of doxycycline (Dox) and (iii) graded response to increasing concentrations of the inducer. The chicken beta actin promoter and an element of the murine immunoglobin heavy chain intron enhancer drive constitutive expression of a bicistronic expression cassette that encodes the highly Dox-sensitive reverse tetracycline controlled transactivator rtTA2(S)-M2 and a Tet repressor-KRAB fusion protein (tTS(KRAB)) (silencer) placed downstream of an internal ribosomal entry site. The gene of interest is expressed from the bidirectional promoter P(tet)bi-1 that allows simultaneous expression of two genes, of which one may be used as surrogate marker for the expression of the gene of interest. Tight down regulation is achieved through binding of the silencer tTS(KRAB) to P(tet)bi-1 in the absence of Dox. Addition of Dox releases repression and via binding of rtTA2(S)-M2 activates P(tet)bi-1
Quantitative Assessment of Whole-Body Tumor Burden in Adult Patients with Neurofibromatosis
Patients with neurofibromatosis 1 (NF1), NF2, and schwannomatosis are at risk for multiple nerve sheath tumors and premature mortality. Traditional magnetic resonance imaging (MRI) has limited ability to assess disease burden accurately. The aim of this study was to establish an international cohort of patients with quantified whole-body internal tumor burden and to correlate tumor burden with clinical features of disease.We determined the number, volume, and distribution of internal nerve sheath tumors in patients using whole-body MRI (WBMRI) and three-dimensional computerized volumetry. We quantified the distribution of tumor volume across body regions and used unsupervised cluster analysis to group patients based on tumor distribution. We correlated the presence and volume of internal tumors with disease-related and demographic factors.WBMRI identified 1286 tumors in 145/247 patients (59%). Schwannomatosis patients had the highest prevalence of tumors (P = 0.03), but NF1 patients had the highest median tumor volume (P = 0.02). Tumor volume was unevenly distributed across body regions with overrepresentation of the head/neck and pelvis. Risk factors for internal nerve sheath tumors included decreasing numbers of café-au-lait macules in NF1 patients (P = 0.003) and history of skeletal abnormalities in NF2 patients (P = 0.09). Risk factors for higher tumor volume included female gender (P = 0.05) and increasing subcutaneous neurofibromas (P = 0.03) in NF1 patients, absence of cutaneous schwannomas in NF2 patients (P = 0.06), and increasing age in schwannomatosis patients (p = 0.10).WBMRI provides a comprehensive phenotype of neurofibromatosis patients, identifies distinct anatomic subgroups, and provides the basis for investigating molecular biomarkers that correlate with unique disease manifestations
Statistical study of linear magnetic hole structures near Earth
The Magnetospheric Multiscale mission (MMS1) data for 8 months in the winter periods of 2017-2018 and 2018-2019, when MMS had its apogee in the upstream solar wind of the Earth's bow shock, are used to study linear magnetic holes (LMHs). These LMHs are characterized by a magnetic depression of more than 50 % and a rotation of the background magnetic field of less then 10g . A total of 406 LMHs are found and, based on their magnetoplasma characteristics, are split into three categories: cold (increase in density, little change in ion temperature), hot (increase in ion temperature, decrease in density) and sign change (at least one magnetic field component changes sign). The occurrence rate of LMHs is 2.3 per day. All LMHs are basically in pressure balance with the ambient plasma. Most of the linear magnetic holes are found in ambient plasmas that are stable against the mirror-mode generation, but only half of the holes are mirror-mode-stable inside
- …