2,072 research outputs found

    Local and global gravity

    Full text link
    Our long experience with Newtonian potentials has inured us to the view that gravity only produces local effects. In this paper we challenge this quite deeply ingrained notion and explicitly identify some intrinsically global gravitational effects. In particular we show that the global cosmological Hubble flow can actually modify the motions of stars and gas within individual galaxies, and even do so in a way which can apparently eliminate the need for galactic dark matter. Also we show that a classical light wave acquires an observable, global, path dependent phase in traversing a gravitational field. Both of these effects serve to underscore the intrinsic difference between non-relativistic and relativistic gravity.Comment: LaTeX, 20 pages plus three figures in two postscript files. To appear in a special issue of Foundations of Physics honoring Professor Lawrence Horwitz on the occasion of his 65th birthday; A. van der Merwe and S. Raby, Editors, Plenum Publishing Company, N.Y., 199

    Photon-Photon Absorption of Very High Energy Gamma-Rays from Microquasars: Application to LS 5039

    Full text link
    Very high energy (VHE) gamma-rays have recently been detected from the Galactic black-hole candidate and microquasar LS 5039. A plausible site for the production of these VHE gamma-rays is the region close to the mildly relativistic outflow. However, at distances comparable to the binary separation, the intense photon field of the stellar companion will lead to substantial gamma-gamma absorption of VHE gamma-rays. If the system is viewed at a substantial inclination (i > 0), this absorption feature will be modulated on the orbital period of the binary as a result of a phase-dependent stellar-radiation intensity and pair-production threshold. We apply our results to LS 5039 and find that (1) gamma-gamma absorption effects will be substantial if the photon production site is located at a distance from the central compact object of the order of the binary separation (~ 2.5e12 cm) or less; (2) the gamma-gamma absorption depth will be largest at a few hundred GeV, leading to a characteristic absorption trough; (3) the gamma-gamma absorption feature will be strongly modulated on the orbital period of the binary, characterized by a spectral hardening accompanying periodic dips of the VHE gamma-ray flux; and (4) gamma rays can escape virtually unabsorbed, even from within ~ 10^{12} cm, when the star is located behind the production site as seen by the observer.Comment: Submitted to ApJ Letters. AASTeX, 12 ms pages, including 4 eps figure

    Simplified models for photohadronic interactions in cosmic accelerators

    Full text link
    We discuss simplified models for photo-meson production in cosmic accelerators, such as Active Galactic Nuclei and Gamma-Ray Bursts. Our self-consistent models are directly based on the underlying physics used in the SOPHIA software, and can be easily adapted if new data are included. They allow for the efficient computation of neutrino and photon spectra (from pi^0 decays), as a major requirement of modern time-dependent simulations of the astrophysical sources and parameter studies. In addition, the secondaries (pions and muons) are explicitely generated, a necessity if cooling processes are to be included. For the neutrino production, we include the helicity dependence of the muon decays which in fact leads to larger corrections than the details of the interaction model. The separate computation of the pi^0, pi^+, and pi^- fluxes allows, for instance, for flavor ratio predictions of the neutrinos at the source, which are a requirement of many tests of neutrino properties using astrophysical sources. We confirm that for charged pion generation, the often used production by the Delta(1232)-resonance is typically not the dominant process in Active Galactic Nuclei and Gamma-Ray Bursts, and we show, for arbitrary input spectra, that the number of neutrinos are underestimated by at least a factor of two if they are obtained from the neutral to charged pion ratio. We compare our results for several levels of simplification using isotropic synchrotron and thermal spectra, and we demonstrate that they are sufficiently close to the SOPHIA software.Comment: Treatment of high energy interactions refined, additional black body benchmark added (v2), some references corrected (v3). A Mathematica notebook which illustrates the implementation of one model can be found at http://theorie.physik.uni-wuerzburg.de/~winter/Resources/AstroModel/Sim-B.html . 46 pages, 14 (color) figures, 7 tables. Final version, accepted for publication in Ap

    Constraints on AdS5AdS_5 Embeddings

    Get PDF
    We show that the embedding of either a static or a time dependent maximally 3-symmetric brane with non-zero spatial curvature kk into a non-compactified AdS5AdS_5 bulk does not yield exponential suppression of the geometry away from the brane. Implications of this result for brane-localized gravity are discussed.Comment: RevTeX, 9 pages (updated version v2, conclusions unchanged after extension to the non-static case

    X-Ray Spectral Variability of Extreme BL Lac AGN H1426+428

    Get PDF
    Between 7 March 2002 and 15 June 2002, intensive X-ray observations were carried out on the extreme BL Lac object H1426+428 with instruments on board the Rossi X-ray Timing Explorer (RXTE). These instruments provide measurements of H1426+428 in the crucial energy range that characterizes the first peak of its spectral energy distribution. This peak, which is almost certainly due to synchrotron emission, has previously been inferred to be in excess of 100 keV. By taking frequent observations over a four-month campaign, which included \sim450 ksec of RXTE time, studies of flux and spectral variability on multiple timescales were performed, along with studies of spectral hysteresis. The 3-24 keV X-ray flux and spectra exhibited significant variability, implying variability in the location of the first peak of the spectral energy distribution. Hysteresis patterns were observed, and their characteristics have been discussed within the context of emission models.Comment: accepted for publication in Astrophysical Journa

    Gamma-ray Flares and VLBI Outbursts of Blazars

    Full text link
    A model is developed for the time dependent electromagnetic - radio to gamma-ray - emission of active galactic nuclei, specifically, the blazars, based on the acceleration and creation of leptons at a propagating discontinuity or {\it front} of a Poynting flux jet. The front corresponds to a discrete relativistic jet component as observed with very-long-baseline-interferometry (VLBI). Equations are derived for the number, momentum, and energy of particles in the front taking into account synchrotron, synchrotron-self-Compton (SSC), and inverse-Compton processes as well as photon-photon pair production. The apparent synchrotron, SSC, and inverse-Compton luminosities as functions of time are determined. Predictions of the model are compared with observations in the gamma, optical and radio bands. The delay between the high-energy gamma-ray flare and the onset of the radio is explained by self-absorption and/or free-free absorption by external plasma. Two types of gamma-ray flares are predicted depending on pair creation in the front.Comment: 11 pages, submitted to ApJ. 10 figures can be obtained from R. Lovelace by sending postal address to [email protected]

    High-Energy Neutrinos from Photomeson Processes in Blazars

    Get PDF
    An important radiation field for photomeson neutrino production in blazars is shown to be the radiation field external to the jet. Assuming that protons are accelerated with the same power as electrons and injected with a -2 number spectrum, we predict that km^2 neutrino telescopes will detect about 1-to-several neutrinos per year from flat spectrum radio quasars (FSRQs) such as 3C 279. The escaping high-energy neutron and photon beams transport inner jet energy far from the black-hole engine, and could power synchrotron X-ray jets and FR II hot spots and lobes.Comment: revised paper (minor revisions), accepted for publication in PR

    Analyzing the Multiwavelength Spectrum and Variability of BL Lacertae During the July 1997 Outburst

    Full text link
    The multiwavelength spectrum of BL Lacertae during its July 1997 outburst is analyzed in terms of different variations of the homogeneous leptonic jet model for the production of high-energy radiation from blazars. We find that a two-component gamma-ray spectrum, consisting of a synchrotron self-Compton and an external Compton component, is required in order to yield an acceptable fit to the broadband spectrum. Our analysis indicates that in BL Lac, unlike other BL Lac objects, the broad emission line region plays an important role for the high-energy emission. Several alternative blazar jet models are briefly discussed. In the appendix, we describe the formalism in which the process of Comptonization of reprocessed accretion disk photons is treated in the previously developed blazar jet simulation code which we use.Comment: Now accepted for publication in The Astronomical Journal. Significantly extended discussion w.r.t. original version. 3 Figures included using epsf.sty, rotate.st

    Controlled irradiation hardening of tungsten by cyclic recrystallization

    Get PDF
    The economical lifetime of the divertor is a key concern for realizing nuclear fusion reactors that may solve the world's energy problem. A main risk is thermo-mechanical failure of the plasma-facing tungsten monoblocks, as a consequence of irradiation hardening induced by neutron displacement cascades. Lifetime extensions that could be carried out without prolonged maintenance periods are desired. In this work, the effects of potential treatments for extending the lifetime of an operational reactor are explored. The proposed treatments make use of cyclic recrystallization processes that can occur in neutron-irradiated tungsten. Evolution of the microstructure under non-isothermal conditions is investigated, employing a multi-scale model that includes a physically-based mean-field recrystallization model and a cluster dynamics model for neutron irradiation effects. The model takes into account microstructural properties such as grain size and displacement-induced defect concentrations. The evolution of a hardness indicator under neutron irradiation was studied. The results reveal that, for the given microstructure and under the assumed model behaviour, periodical extra heating can have a significant positive influence on controlling the irradiation hardening. For example, at 800 C, if extra annealing at 1200 C was applied after every 100 hrs for the duration of 1 hr, then the hardness indicator reduces from maximum 140 to below 70.Comment:
    corecore