882 research outputs found
Ray-tracing in pseudo-complex General Relativity
Motivated by possible observations of the black hole candidate in the center
of our galaxy and the galaxy M87, ray-tracing methods are applied to both
standard General Relativity (GR) and a recently proposed extension, the
pseudo-complex General Relativity (pc-GR). The correction terms due to the
investigated pc-GR model lead to slower orbital motions close to massive
objects. Also the concept of an innermost stable circular orbit (ISCO) is
modified for the pc-GR model, allowing particles to get closer to the central
object for most values of the spin parameter than in GR. Thus, the
accretion disk, surrounding a massive object, is brighter in pc-GR than in GR.
Iron K emission line profiles are also calculated as those are good
observables for regions of strong gravity. Differences between the two theories
are pointed out.Comment: revised versio
Assessing periodicity of periodic leg movements during sleep
Periodic leg movements (PLM) during sleep consist of involuntary periodic movements of the lower extremities. The debated functional relevance of PLM during sleep is based on correlation of clinical parameters with the PLM index (PLMI). However, periodicity in movements may not be reflected best by the PLMI. Here, an approach novel to the field of sleep research is used to reveal intrinsic periodicity in inter movement intervals (IMI) in patients with PLM
The Hubbard Model at Infinite Dimensions: Thermodynamic and Transport Properties
We present results on thermodynamic quantities, resistivity and optical
conductivity for the Hubbard model on a simple hypercubic lattice in infinite
dimensions. Our results for the paramagnetic phase display the features
expected from an intuitive analysis of the one-particle spectra and
substantiate the similarity of the physics of the Hubbard model to those of
heavy fermion systems. The calculations were performed using an approximate
solution to the single-impurity Anderson model, which is the key quantity
entering the solution of the Hubbard model in this limit. To establish the
quality of this approximation we compare its results, together with those
obtained from two other widely used methods, to essentially exact quantum Monte
Carlo results.Comment: 29 pages, 16 figure
Low-temperature coherence in the periodic Anderson model: Predictions for photoemission of heavy Fermions
We present numerically exact predictions of the periodic and single-impurity
Anderson models to address photoemission experiments on heavy Fermion systems.
Unlike the single impurity model the lattice model is able to account for the
enhanced intensity, dispersion, and apparent weak temperature dependence of the
Kondo resonant peak seen in recent controversial photoemission experiments. We
present a consistent interpretation of these results as a crossover from the
impurity regime to an effective Hubbard model regime described by Nozieres.Comment: 4 pages, 3 figure
Local Electronic Structure of Defects in Superconductors
The electronic structure near defects (such as impurities) in superconductors
is explored using a new, fully self-consistent technique. This technique
exploits the short-range nature of the impurity potential and the induced
change in the superconducting order parameter to calculate features in the
electronic structure down to the atomic scale with unprecedented spectral
resolution. Magnetic and non-magnetic static impurity potentials are
considered, as well as local alterations in the pairing interaction. Extensions
to strong-coupling superconductors and superconductors with anisotropic order
parameters are formulated.Comment: RevTex source, 20 pages including 22 figures in text with eps
Molecular Dynamics Simulations
A tutorial introduction to the technique of Molecular Dynamics (MD) is given,
and some characteristic examples of applications are described. The purpose and
scope of these simulations and the relation to other simulation methods is
discussed, and the basic MD algorithms are described. The sampling of intensive
variables (temperature T, pressure p) in runs carried out in the microcanonical
(NVE) ensemble (N= particle number, V = volume, E = energy) is discussed, as
well as the realization of other ensembles (e.g. the NVT ensemble). For a
typical application example, molten SiO2, the estimation of various transport
coefficients (self-diffusion constants, viscosity, thermal conductivity) is
discussed. As an example of Non-Equilibrium Molecular Dynamics (NEMD), a study
of a glass-forming polymer melt under shear is mentioned.Comment: 38 pages, 11 figures, to appear in J. Phys.: Condens. Matte
Conformational and Structural Relaxations of Poly(ethylene oxide) and Poly(propylene oxide) Melts: Molecular Dynamics Study of Spatial Heterogeneity, Cooperativity, and Correlated Forward-Backward Motion
Performing molecular dynamics simulations for all-atom models, we
characterize the conformational and structural relaxations of poly(ethylene
oxide) and poly(propylene oxide) melts. The temperature dependence of these
relaxation processes deviates from an Arrhenius law for both polymers. We
demonstrate that mode-coupling theory captures some aspects of the glassy
slowdown, but it does not enable a complete explanation of the dynamical
behavior. When the temperature is decreased, spatially heterogeneous and
cooperative translational dynamics are found to become more important for the
structural relaxation. Moreover, the transitions between the conformational
states cease to obey Poisson statistics. In particular, we show that, at
sufficiently low temperatures, correlated forward-backward motion is an
important aspect of the conformational relaxation, leading to strongly
nonexponential distributions for the waiting times of the dihedrals in the
various conformational statesComment: 13 pages, 13 figure
The Aharonov-Bohm effect for an exciton
We study theoretically the exciton absorption on a ring shreded by a magnetic
flux. For the case when the attraction between electron and hole is
short-ranged we get an exact solution of the problem. We demonstrate that,
despite the electrical neutrality of the exciton, both the spectral position of
the exciton peak in the absorption, and the corresponding oscillator strength
oscillate with magnetic flux with a period ---the universal flux
quantum. The origin of the effect is the finite probability for electron and
hole, created by a photon at the same point, to tunnel in the opposite
directions and meet each other on the opposite side of the ring.Comment: 13 RevTeX 3.0 pages plus 4 EPS-figures, changes include updated
references and an improved chapter on possible experimental realization
A conserved regulatory program drives emergence of the lateral plate mesoderm
Cardiovascular cell lineages emerge with kidney, smooth muscle, and limb skeleton progenitors from the lateral plate mesoderm (LPM). How the LPM emerges during development and how it has evolved to form key lineages of the vertebrate body plan remain unknown. Here, we captured LPM formation by transgenic in toto imaging and lineage tracing using the first pan-LPM enhancer element from the zebrafish gene draculin (drl). drl LPM enhancer-based reporters are specifically active in LPM-corresponding territories of several chordate species, uncovering a universal LPM-specific gene program. Distinct from other mesoderm, we identified EomesA, FoxH1, and MixL1 with BMP/Nodal-controlled Smad activity as minimally required factors to drive drl-marked LPM formation. Altogether, our work provides a developmental and mechanistic framework for LPM emergence and the in vitro differentiation of cardiovascular cell types. Our findings suggest that the LPM may represent an ancient cell fate domain that predates ancestral vertebrates
The SZT2 Interactome Unravels New Functions of the KICSTOR Complex
Seizure threshold 2 (SZT2) is a component of the KICSTOR complex which, under catabolic conditions, functions as a negative regulator in the amino acid-sensing branch of mTORC1. Mutations in this gene cause a severe neurodevelopmental and epileptic encephalopathy whose main symptoms include epilepsy, intellectual disability, and macrocephaly. As SZT2 remains one of the least characterized regulators of mTORC1, in this work we performed a systematic interactome analysis under catabolic and anabolic conditions. Besides numerous mTORC1 and AMPK signaling components, we identified clusters of proteins related to autophagy, ciliogenesis regulation, neurogenesis, and neurodegenerative processes. Moreover, analysis of SZT2 ablated cells revealed increased mTORC1 signaling activation that could be reversed by Rapamycin or Torin treatments. Strikingly, SZT2 KO cells also exhibited higher levels of autophagic components, independent of the physiological conditions tested. These results are consistent with our interactome data, in which we detected an enriched pool of selective autophagy receptors/regulators. Moreover, preliminary analyses indicated that SZT2 alters ciliogenesis. Overall, the data presented form the basis to comprehensively investigate the physiological functions of SZT2 that could explain major molecular events in the pathophysiology of developmental and epileptic encephalopathy in patients with SZT2 mutations
- …