245 research outputs found
Instantaneous Bethe-Salpeter Equation: Analytic Approach for Nonvanishing Masses of the Bound-State Constituents
The instantaneous Bethe-Salpeter equation, derived from the general
Bethe-Salpeter formalism by assuming that the involved interaction kernel is
instantaneous, represents the most promising framework for the description of
hadrons as bound states of quarks from first quantum-field-theoretic
principles, that is, quantum chromodynamics. Here, by extending a previous
analysis confined to the case of bound-state constituents with vanishing
masses, we demonstrate that the instantaneous Bethe-Salpeter equation for
bound-state constituents with (definitely) nonvanishing masses may be converted
into an eigenvalue problem for an explicitly - more precisely, algebraically -
known matrix, at least, for a rather wide class of interactions between these
bound-state constituents. The advantages of the explicit knowledge of this
matrix representation are self-evident.Comment: 12 Pages, LaTeX, 1 figur
Energy bounds for the spinless Salpeter equation
We study the spectrum of the spinless-Salpeter Hamiltonian H = \beta
\sqrt{m^2 + p^2} + V(r), where V(r) is an attractive central potential in three
dimensions. If V(r) is a convex transformation of the Coulomb potential -1/r
and a concave transformation of the harmonic-oscillator potential r^2, then
upper and lower bounds on the discrete eigenvalues of H can be constructed,
which may all be expressed in the form E = min_{r>0} [ \beta \sqrt{m^2 +
P^2/r^2} + V(r) ] for suitable values of P here provided. At the critical point
the relative growth to the Coulomb potential h(r)=-1/r must be bounded by dV/dh
< 2\beta/\pi.Comment: 11 pages, 1 figur
Quality of Variational Trial States
Besides perturbation theory (which clearly requires the knowledge of the
exact unperturbed solution), variational techniques represent the main tool for
any investigation of the eigenvalue problem of some semibounded operator H in
quantum theory. For a reasonable choice of the employed trial subspace of the
domain of H, the lowest eigenvalues of H usually can be located with acceptable
precision whereas the trial-subspace vectors corresponding to these eigenvalues
approximate, in general, the exact eigenstates of H with much less accuracy.
Accordingly, various measures for the accuracy of the approximate eigenstates
derived by variational techniques are scrutinized. In particular, the matrix
elements of the commutator of the operator H and (suitably chosen) different
operators with respect to degenerate approximate eigenstates of H obtained by
variational methods are proposed as new criteria for the accuracy of
variational eigenstates. These considerations are applied to precisely that
Hamiltonian for which the eigenvalue problem defines the well-known spinless
Salpeter equation. This bound-state wave equation may be regarded as (the most
straightforward) relativistic generalization of the usual nonrelativistic
Schroedinger formalism, and is frequently used to describe, e.g., spin-averaged
mass spectra of bound states of quarks.Comment: LaTeX, 7 pages, version to appear in Physical Review
Accuracy of Approximate Eigenstates
Besides perturbation theory, which requires, of course, the knowledge of the
exact unperturbed solution, variational techniques represent the main tool for
any investigation of the eigenvalue problem of some semibounded operator H in
quantum theory. For a reasonable choice of the employed trial subspace of the
domain of H, the lowest eigenvalues of H usually can be located with acceptable
precision whereas the trial-subspace vectors corresponding to these eigenvalues
approximate, in general, the exact eigenstates of H with much less accuracy.
Accordingly, various measures for the accuracy of the approximate eigenstates
derived by variational techniques are scrutinized. In particular, the matrix
elements of the commutator of the operator H and (suitably chosen) different
operators, with respect to degenerate approximate eigenstates of H obtained by
some variational method, are proposed here as new criteria for the accuracy of
variational eigenstates. These considerations are applied to that Hamiltonian
the eigenvalue problem of which defines the "spinless Salpeter equation." This
(bound-state) wave equation may be regarded as the most straightforward
relativistic generalization of the usual nonrelativistic Schroedinger
formalism, and is frequently used to describe, e.g., spin-averaged mass spectra
of bound states of quarks.Comment: LaTeX, 14 pages, Int. J. Mod. Phys. A (in print); 1 typo correcte
Relativistic N-Boson Systems Bound by Oscillator Pair Potentials
We study the lowest energy E of a relativistic system of N identical bosons
bound by harmonic-oscillator pair potentials in three spatial dimensions. In
natural units the system has the semirelativistic ``spinless-Salpeter''
Hamiltonian H = \sum_{i=1}^N \sqrt{m^2 + p_i^2} + \sum_{j>i=1}^N gamma |r_i -
r_j|^2, gamma > 0. We derive the following energy bounds: E(N) = min_{r>0} [N
(m^2 + 2 (N-1) P^2 / (N r^2))^1/2 + N (N-1) gamma r^2 / 2], N \ge 2, where
P=1.376 yields a lower bound and P=3/2 yields an upper bound for all N \ge 2. A
sharper lower bound is given by the function P = P(mu), where mu =
m(N/(gamma(N-1)^2))^(1/3), which makes the formula for E(2) exact: with this
choice of P, the bounds coincide for all N \ge 2 in the Schroedinger limit m
--> infinity.Comment: v2: A scale analysis of P is now included; this leads to revised
energy bounds, which coalesce in the large-m limi
Instantaneous Bethe-Salpeter equation: improved analytical solution
Studying the Bethe-Salpeter formalism for interactions instantaneous in the
rest frame of the bound states described, we show that, for bound-state
constituents of arbitrary masses, the mass of the ground state of a given spin
may be calculated almost entirely analytically with high accuracy, without the
(numerical) diagonalization of the matrix representation obtained by expansion
of the solutions over a suitable set of basis states.Comment: 7 page
Stability in the instantaneous Bethe-Salpeter formalism: harmonic-oscillator reduced Salpeter equation
A popular three-dimensional reduction of the Bethe-Salpeter formalism for the
description of bound states in quantum field theory is the Salpeter equation,
derived by assuming both instantaneous interactions and free propagation of all
bound-state constituents. Numerical (variational) studies of the Salpeter
equation with confining interaction, however, observed specific instabilities
of the solutions, likely related to the Klein paradox and rendering (part of
the) bound states unstable. An analytic investigation of this problem by a
comprehensive spectral analysis is feasible for the reduced Salpeter equation
with only harmonic-oscillator confining interactions. There we are able to
prove rigorously that the bound-state solutions correspond to real discrete
energy spectra bounded from below and are thus free of any instabilities.Comment: 23 pages, 3 figures, extended conclusions, version to appear in Phys.
Rev.
Discrete Spectra of Semirelativistic Hamiltonians
We review various attempts to localize the discrete spectra of
semirelativistic Hamiltonians of the form H = \beta \sqrt{m^2 + p^2} + V(r)
(w.l.o.g. in three spatial dimensions) as entering, for instance, in the
spinless Salpeter equation. Every Hamiltonian in this class of operators
consists of the relativistic kinetic energy \beta \sqrt{m^2 + p^2} (where \beta
> 0 allows for the possibility of more than one particles of mass m) and a
spherically symmetric attractive potential V(r), r = |x|. In general, accurate
eigenvalues of a nonlocal Hamiltonian operator can only be found by the use of
a numerical approximation procedure. Our main emphasis, however, is on the
derivation of rigorous semi-analytical expressions for both upper and lower
bounds to the energy levels of such operators. We compare the bounds obtained
within different approaches and present relationships existing between the
bounds.Comment: 21 pages, 3 figure
Energy bounds for the spinless Salpeter equation: harmonic oscillator
We study the eigenvalues E_{n\ell} of the Salpeter Hamiltonian H =
\beta\sqrt(m^2 + p^2) + vr^2, v>0, \beta > 0, in three dimensions. By using
geometrical arguments we show that, for suitable values of P, here provided,
the simple semi-classical formula E = min_{r > 0} {v(P/r)^2 + \beta\sqrt(m^2 +
r^2)} provides both upper and lower energy bounds for all the eigenvalues of
the problem.Comment: 8 pages, 1 figur
Instantaneous Bethe-Salpeter equation: utmost analytic approach
The Bethe-Salpeter formalism in the instantaneous approximation for the
interaction kernel entering into the Bethe-Salpeter equation represents a
reasonable framework for the description of bound states within relativistic
quantum field theory. In contrast to its further simplifications (like, for
instance, the so-called reduced Salpeter equation), it allows also the
consideration of bound states composed of "light" constituents. Every
eigenvalue equation with solutions in some linear space may be (approximately)
solved by conversion into an equivalent matrix eigenvalue problem. We
demonstrate that the matrices arising in these representations of the
instantaneous Bethe-Salpeter equation may be found, at least for a wide class
of interactions, in an entirely algebraic manner. The advantages of having the
involved matrices explicitly, i.e., not "contaminated" by errors induced by
numerical computations, at one's disposal are obvious: problems like, for
instance, questions of the stability of eigenvalues may be analyzed more
rigorously; furthermore, for small matrix sizes the eigenvalues may even be
calculated analytically.Comment: LaTeX, 23 pages, 2 figures, version to appear in Phys. Rev.
- …
