123 research outputs found

    The supersymmetric modified Poschl-Teller and delta-well potentials

    Get PDF
    New supersymmetric partners of the modified Poschl-Teller and the Dirac's delta well potentials are constructed in closed form. The resulting one-parametric potentials are shown to be interrelated by a limiting process. The range of values of the parameters for which these potentials are free of singularities is exactly determined. The construction of higher order supersymmetric partner potentials is also investigated.Comment: 20 pages, LaTeX file, 4 eps figure

    Construction of exact solutions to eigenvalue problems by the asymptotic iteration method

    Full text link
    We apply the asymptotic iteration method (AIM) [J. Phys. A: Math. Gen. 36, 11807 (2003)] to solve new classes of second-order homogeneous linear differential equation. In particular, solutions are found for a general class of eigenvalue problems which includes Schroedinger problems with Coulomb, harmonic oscillator, or Poeschl-Teller potentials, as well as the special eigenproblems studied recently by Bender et al [J. Phys. A: Math. Gen. 34 9835 (2001)] and generalized in the present paper to higher dimensions.Comment: 10 page

    Validation of an arterial tortuosity measure with application to hypertension collection of clinical hypertensive patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypertension may increase tortuosity or twistedness of arteries. We applied a centerline extraction algorithm and tortuosity metric to magnetic resonance angiography (MRA) brain images to quantitatively measure the tortuosity of arterial vessel centerlines. The most commonly used arterial tortuosity measure is the distance factor metric (DFM). This study tested a DFM based measurement’s ability to detect increases in arterial tortuosity of hypertensives using existing images. Existing images presented challenges such as different resolutions which may affect the tortuosity measurement, different depths of the area imaged, and different artifacts of imaging that require filtering.</p> <p>Methods</p> <p>The stability and accuracy of alternative centerline algorithms was validated in numerically generated models and test brain MRA data. Existing images were gathered from previous studies and clinical medical systems by manually reading electronic medical records to identify hypertensives and negatives. Images of different resolutions were interpolated to similar resolutions. Arterial tortuosity in MRA images was measured from a DFM curve and tested on numerically generated models as well as MRA images from two hypertensive and three negative control populations. Comparisons were made between different resolutions, different filters, hypertensives versus negatives, and different negative controls.</p> <p>Results</p> <p>In tests using numerical models of a simple helix, the measured tortuosity increased as expected with more tightly coiled helices. Interpolation reduced resolution-dependent differences in measured tortuosity. The Korean hypertensive population had significantly higher arterial tortuosity than its corresponding negative control population across multiple arteries. In addition one negative control population of different ethnicity had significantly less arterial tortuosity than the other two.</p> <p>Conclusions</p> <p>Tortuosity can be compared between images of different resolutions by interpolating from lower to higher resolutions. Use of a universal negative control was not possible in this study. The method described here detected elevated arterial tortuosity in a hypertensive population compared to the negative control population and can be used to study this relation in other populations.</p

    Mechanisms, functions and ecology of colour vision in the honeybee.

    Get PDF
    notes: PMCID: PMC4035557types: Journal Article© The Author(s) 2014.This is an open access article that is freely available in ORE or from Springerlink.com. Please cite the published version available at: http://link.springer.com/article/10.1007%2Fs00359-014-0915-1Research in the honeybee has laid the foundations for our understanding of insect colour vision. The trichromatic colour vision of honeybees shares fundamental properties with primate and human colour perception, such as colour constancy, colour opponency, segregation of colour and brightness coding. Laborious efforts to reconstruct the colour vision pathway in the honeybee have provided detailed descriptions of neural connectivity and the properties of photoreceptors and interneurons in the optic lobes of the bee brain. The modelling of colour perception advanced with the establishment of colour discrimination models that were based on experimental data, the Colour-Opponent Coding and Receptor Noise-Limited models, which are important tools for the quantitative assessment of bee colour vision and colour-guided behaviours. Major insights into the visual ecology of bees have been gained combining behavioural experiments and quantitative modelling, and asking how bee vision has influenced the evolution of flower colours and patterns. Recently research has focussed on the discrimination and categorisation of coloured patterns, colourful scenes and various other groupings of coloured stimuli, highlighting the bees' behavioural flexibility. The identification of perceptual mechanisms remains of fundamental importance for the interpretation of their learning strategies and performance in diverse experimental tasks.Biotechnology and Biological Sciences Research Council (BBSRC

    Zur Darstellung des Potentialverlaufs bei zweiatomigen Molek�len

    No full text

    �ber die Fluoreszenz von Schwefeldioxyd

    No full text

    Automatic Tortuosity Detection and Measurement of Retinal Blood Vessel Network

    No full text

    Über den Feinbau des kristallisierten Kautschuks

    No full text
    corecore