621 research outputs found

    A two stage vector quantization approach via self-organizing map

    Full text link
    In this paper, a two-stage algorithm for vector quantization is proposed based on a self-organizing map (SOM) neural network. First, a conventional self-organizing map is modified to deal with dead codebooks in the learning process and is then used to obtain the codebook distribution structure for a given set of input data. Next, subblocks are classified based on the previous structure distribution with a prior criteria. Then, the conventional LBG algorithm is applied to these sub-blocks for data classification with initial values obtained via the SOM. Finally, extensive simulations illustrate that the proposed two-stage algorithm is very effective.<br /

    Electronic structure interpolation via atomic orbitals

    Full text link
    We present an efficient scheme for accurate electronic structure interpolations based on the systematically improvable optimized atomic orbitals. The atomic orbitals are generated by minimizing the spillage value between the atomic basis calculations and the converged plane wave basis calculations on some coarse kk-point grid. They are then used to calculate the band structure of the full Brillouin zone using the linear combination of atomic orbitals (LCAO) algorithms. We find that usually 16 -- 25 orbitals per atom can give an accuracy of about 10 meV compared to the full {\it ab initio} calculations. The current scheme has several advantages over the existing interpolation schemes. The scheme is easy to implement and robust which works equally well for metallic systems and systems with complex band structures. Furthermore, the atomic orbitals have much better transferability than the Shirley's basis and Wannier functions, which is very useful for the perturbation calculations

    Ab initio study of the formation of transparent carbon under pressure

    Full text link
    A body-centered tetragonal carbon (bct-Carbon) allotrope has been predicted to be a transparent carbon polymorph obtained under pressure. The structural transition pathways from graphite to diamond, M-Carbon, and bct-Carbon are simulated and the lowest activation barrier is found for the graphite-bct transition. Furthermore, bct-Carbon has higher shear strength than diamond due to its perpendicular graphene-like structure. Our results provide a possible explanation for the formation of a transparent carbon allotrope via the cold compression of graphite. We also verify that this allotrope is hard enough to crack diamond.Comment: [email protected] or [email protected]

    Stable isotope compositions (δ2H, δ18O and δ17O) of rainfall and snowfall in the central United States

    Get PDF
    Stable isotopes of hydrogen and oxygen (δ2H, δ18O and δ17O) can be used as natural tracers to improve our understanding of hydrological and meteorological processes. Studies of precipitation isotopes, especially 17O-excess observations, are extremely limited in the mid-latitudes. To fill this knowledge gap, we measured δ2H, δ18O and δ17O of event-based precipitation samples collected from Indianapolis, Indiana, USA over two years and investigated the influence of meteorological factors on precipitation isotope variations. The results showed that the daily temperature played a major role in controlling the isotope variations. Precipitation experienced kinetic fractionation associated with evaporation at the moisture source in the spring and summer and for rainfall, while snowfall, as well as precipitation in the fall and winter, were mainly affected by equilibrium fractionation. The 17O-excess of both rainfall and snowfall were not affected by local meteorological factors over the whole study period. At the seasonal scale, it was the case only for the spring. Therefore, 17O-excess of rainfall, snowfall and the spring precipitation could be considered as tracers of evaporative conditions at the moisture source. This study provides a unique precipitation isotope dataset for mid-latitudes and provides a more mechanistic understanding of precipitation formation mechanisms in this region

    CMB Temperature and Matter Power Spectrum in a Decay Vacuum Dark Energy Model

    Full text link
    In this paper, a decay vacuum model ρˉΛ=3σMp2H0H\bar{\rho}_\Lambda=3\sigma M_p^2H_0 H is revisited by detailed analysis of background evolution and perturbation equations. We show the imprints on CMB temperature and matter power spectrum from the effective coupling terms between dark sectors by comparing to the standard cosmological constant model and observational data points (WMAP7 and SDSS DR7). We find that the decay vacuum model can describe the expansion rate at late times as well as the standard cosmological constant model but it fails to simultaneously reproduce the observed CMB and matter power spectrum. Its generalization ρˉΛ=3Mp2(ξ1H0H+ξ2H2)\bar{\rho}_\Lambda=3M_p^2(\xi_1 H_0 H+\xi_2 H^2) is also discussed. Detailed analysis of the background evolution shows that the dimensionless parameter ξ2\xi_{2} would be zero to avoid the unnatural 'fine tuning' and to keep the positivity of energy density of dark matter and dark energy in the early epoch

    Scattering of scalar perturbations with cosmological constant in low-energy and high-energy regimes

    Full text link
    We study the absorption and scattering of massless scalar waves propagating in spherically symmetric spacetimes with dynamical cosmological constant both in low-energy and high-energy zones. In the former low-energy regime, we solve analytically the Regge-Wheeler wave equation and obtain an analytic absorption probability expression which varies with MΛM\sqrt{\Lambda}, where MM is the central mass and Λ\Lambda is cosmological constant. The low-energy absorption probability, which is in the range of [0,0.986701][0, 0.986701], increases monotonically with increase in Λ\Lambda. In the latter high-energy regime, the scalar particles adopt their geometric optics limit value. The trajectory equation with effective potential emerges and the analytic high-energy greybody factor, which is relevant with the area of classically accessible regime, also increases monotonically with increase in Λ\Lambda, as long Λ\Lambda is less than or of the order of 10410^4. In this high-energy case, the null cosmological constant result reduces to the Schwarzschild value 27πrg2/427\pi r_g^2/4.Comment: 12 pages, 6 figure
    corecore