1,426 research outputs found

    Franck-Condon Factors as Spectral Probes of Polaron Structure

    Full text link
    We apply the Merrifield variational method to the Holstein molecular crystal model in D dimensions to compute non-adiabatic polaron band energies and Franck-Condon factors at general crystal momenta. We analyze these observable properties to extract characteristic features related to polaron self-trapping and potential experimental signatures. These results are combined with others obtained by the Global-Local variational method in 1D to construct a polaron phase diagram encompassing all degrees of adiabaticity and all electron-phonon coupling strengths. The polaron phase diagram so constructed includes disjoint regimes occupied by "small" polarons, "large" polarons, and a newly-defined class of "compact" polarons, all mutually separated by an intermediate regime occupied by transitional structures

    Multiplicative Noise: Applications in Cosmology and Field Theory

    Full text link
    Physical situations involving multiplicative noise arise generically in cosmology and field theory. In this paper, the focus is first on exact nonlinear Langevin equations, appropriate in a cosmologica setting, for a system with one degree of freedom. The Langevin equations are derived using an appropriate time-dependent generalization of a model due to Zwanzig. These models are then extended to field theories and the generation of multiplicative noise in such a context is discussed. Important issues in both the cosmological and field theoretic cases are the fluctuation-dissipation relations and the relaxation time scale. Of some importance in cosmology is the fact that multiplicative noise can substantially reduce the relaxation time. In the field theoretic context such a noise can lead to a significant enhancement in the nucleation rate of topological defects.Comment: 21 pages, LaTex, LA-UR-93-210

    Escape of a Uniform Random Walk from an Interval

    Full text link
    We study the first-passage properties of a random walk in the unit interval in which the length of a single step is uniformly distributed over the finite range [-a,a]. For a of the order of one, the exit probabilities to each edge of the interval and the exit time from the interval exhibit anomalous properties stemming from the change in the minimum number of steps to escape the interval as a function of the starting point. As a decreases, first-passage properties approach those of continuum diffusion, but non-diffusive effects remain because of residual discreteness effectsComment: 8 pages, 8 figures, 2 column revtex4 forma

    Intermittent random walks for an optimal search strategy: One-dimensional case

    Full text link
    We study the search kinetics of an immobile target by a concentration of randomly moving searchers. The object of the study is to optimize the probability of detection within the constraints of our model. The target is hidden on a one-dimensional lattice in the sense that searchers have no a priori information about where it is, and may detect it only upon encounter. The searchers perform random walks in discrete time n=0,1,2, ..., N, where N is the maximal time the search process is allowed to run. With probability \alpha the searchers step on a nearest-neighbour, and with probability (1-\alpha) they leave the lattice and stay off until they land back on the lattice at a fixed distance L away from the departure point. The random walk is thus intermittent. We calculate the probability P_N that the target remains undetected up to the maximal search time N, and seek to minimize this probability. We find that P_N is a non-monotonic function of \alpha, and show that there is an optimal choice \alpha_{opt}(N) of \alpha well within the intermittent regime, 0 < \alpha_{opt}(N) < 1, whereby P_N can be orders of magnitude smaller compared to the "pure" random walk cases \alpha =0 and \alpha = 1.Comment: 19 pages, 5 figures; submitted to Journal of Physics: Condensed Matter; special issue on Chemical Kinetics Beyond the Textbook: Fluctuations, Many-Particle Effects and Anomalous Dynamics, eds. K.Lindenberg, G.Oshanin and M.Tachiy
    • …
    corecore