259 research outputs found

    A Polymerase-chain-reaction Assay for the Specific Identification of Transcripts Encoded by Individual Carcinoembryonic Antigen (CEA)-gene-family Members

    Get PDF
    Carcinoembryonic antigen (CEA) is a tumor marker that belongs to a family of closely related molecules with variable expression patterns. We have developed sets of oligonucleotide primers for the specific amplification of transcripts from individual CEA-family members using the reverse transcriptase/ polymerase chain reaction (RT/PCR). Specific primer sets were designed for CEA, non-specific cross-reacting antigen (NCA), biliary glycoprotein (BGP), carcinoembryonic antigen gene-family members 1, 6 and 7 (CGMI, CGM6 and CGM7), and one set for all pregnancy-specific glycoprotein (PSG) transcripts. Primers were first tested for their specificity against individual cDNA clones and product-hybridization with internal, transcript-specific oligonucleotides. Total RNA from 12 brain and 63 gynecological tumors were then tested for expression of CEA-related transcripts. None were found in tumors located in the brain, including various mesenchymal and neuro-epithelial tumors. CEA and NCA transcripts were, however, present in an adenocarcinoma located in the nasal sinuses. In ovarian mucinous adenocarcinomas, we always found co-expression of CEA and NCA transcripts, and occasionally BGP mRNA. CEA-related transcripts were also found in some serous, endometrioid and clear-cell ovarian carcinomas. CEA, NCA and BGP transcripts were present in endometrial carcinomas of the uterus and cervical carcinomas, whereas uterine leiomyomas were completely negative. No transcripts were found from CGM 1, CGM6, CGM7 or from PSG genes in any of the tumors tested. The PCR data were compared with immunohistochemical investigations of ovarian tumors at the protein level using CEA (26/3/13)-, NCA-50/90 (9A6FR) and NCA-95 (80H3)-specific monoclonal antibodies

    Simple Models of Plant Learning and Memory

    Get PDF
    Plants are capable of intelligent responses to complex environmental signals. Learning and memory play fundamental roles in such responses. Two simple models of plant memory are proposed based on the calcium-signalling system. The memory states correspond to steady state distributions of calcium ions.Comment: 10 pages,Proceedings of international conference on unconventional application of statistical physics(to be published in Physica Scripta

    Toward homochiral protocells in noncatalytic peptide systems

    Full text link
    The activation-polymerization-epimerization-depolymerization (APED) model of Plasson et al. has recently been proposed as a mechanism for the evolution of homochirality on prebiotic Earth. The dynamics of the APED model in two-dimensional spatially-extended systems is investigated for various realistic reaction parameters. It is found that the APED system allows for the formation of isolated homochiral proto-domains surrounded by a racemate. A diffusive slowdown of the APED network such as induced through tidal motion or evaporating pools and lagoons leads to the stabilization of homochiral bounded structures as expected in the first self-assembled protocells.Comment: 10 pages, 5 figure

    Habitable Zones in the Universe

    Full text link
    Habitability varies dramatically with location and time in the universe. This was recognized centuries ago, but it was only in the last few decades that astronomers began to systematize the study of habitability. The introduction of the concept of the habitable zone was key to progress in this area. The habitable zone concept was first applied to the space around a star, now called the Circumstellar Habitable Zone. Recently, other, vastly broader, habitable zones have been proposed. We review the historical development of the concept of habitable zones and the present state of the research. We also suggest ways to make progress on each of the habitable zones and to unify them into a single concept encompassing the entire universe.Comment: 71 pages, 3 figures, 1 table; to be published in Origins of Life and Evolution of Biospheres; table slightly revise

    Mapping HIV-1 Vaccine Induced T-Cell Responses: Bias towards Less-Conserved Regions and Potential Impact on Vaccine Efficacy in the Step Study

    Get PDF
    T cell directed HIV vaccines are based upon the induction of CD8+ T cell memory responses that would be effective in inhibiting infection and subsequent replication of an infecting HIV-1 strain, a process that requires a match or near-match between the epitope induced by vaccination and the infecting viral strain. We compared the frequency and specificity of the CTL epitope responses elicited by the replication-defective Ad5 gag/pol/nef vaccine used in the Step trial with the likelihood of encountering those epitopes among recently sequenced Clade B isolates of HIV-1. Among vaccinees with detectable 15-mer peptide pool ELISpot responses, there was a median of four (one Gag, one Nef and two Pol) CD8 epitopes per vaccinee detected by 9-mer peptide ELISpot assay. Importantly, frequency analysis of the mapped epitopes indicated that there was a significant skewing of the T cell response; variable epitopes were detected more frequently than would be expected from an unbiased sampling of the vaccine sequences. Correspondingly, the most highly conserved epitopes in Gag, Pol, and Nef (defined by presence in >80% of sequences currently in the Los Alamos database www.hiv.lanl.gov) were detected at a lower frequency than unbiased sampling, similar to the frequency reported for responses to natural infection, suggesting potential epitope masking of these responses. This may be a generic mechanism used by the virus in both contexts to escape effective T cell immune surveillance. The disappointing results of the Step trial raise the bar for future HIV vaccine candidates. This report highlights the bias towards less-conserved epitopes present in the same vaccine used in the Step trial. Development of vaccine strategies that can elicit a greater breadth of responses, and towards conserved regions of the genome in particular, are critical requirements for effective T-cell based vaccines against HIV-1

    Structure and evolution of the mouse pregnancy-specific glycoprotein (Psg) gene locus

    Get PDF
    BACKGROUND: The pregnancy-specific glycoprotein (Psg) genes encode proteins of unknown function, and are members of the carcinoembryonic antigen (Cea) gene family, which is a member of the immunoglobulin gene (Ig) superfamily. In rodents and primates, but not in artiodactyls (even-toed ungulates / hoofed mammals), there have been independent expansions of the Psg gene family, with all members expressed exclusively in placental trophoblast cells. For the mouse Psg genes, we sought to determine the genomic organisation of the locus, the expression profiles of the various family members, and the evolution of exon structure, to attempt to reconstruct the evolutionary history of this locus, and to determine whether expansion of the gene family has been driven by selection for increased gene dosage, or diversification of function. RESULTS: We collated the mouse Psg gene sequences currently in the public genome and expressed-sequence tag (EST) databases and used systematic BLAST searches to generate complete sequences for all known mouse Psg genes. We identified a novel family member, Psg31, which is similar to Psg30 but, uniquely amongst mouse Psg genes, has a duplicated N1 domain. We also identified a novel splice variant of Psg16 (bCEA). We show that Psg24 and Psg30 / Psg31 have independently undergone expansion of N-domain number. By mapping BAC, YAC and cosmid clones we described two clusters of Psg genes, which we linked and oriented using fluorescent in situ hybridisation (FISH). Comparison of our Psg locus map with the public mouse genome database indicates good agreement in overall structure and further elucidates gene order. Expression levels of Psg genes in placentas of different developmental stages revealed dramatic differences in the developmental expression profile of individual family members. CONCLUSION: We have combined existing information, and provide new information concerning the evolution of mouse Psg exon organization, the mouse Psg genomic locus structure, and the expression patterns of individual Psg genes. This information will facilitate functional studies of this complex gene family

    Hexose-6-phosphate Dehydrogenase Modulates 11β-Hydroxysteroid Dehydrogenase Type 1-Dependent Metabolism of 7-keto- and 7β-hydroxy-neurosteroids

    Get PDF
    BACKGROUND: The role of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) in the regulation of energy metabolism and immune system by locally reactivating glucocorticoids has been extensively studied. Experiments determining initial rates of enzyme activity revealed that 11beta-HSD1 can catalyze both the reductase and the dehydrogenase reaction in cell lysates, whereas it predominantly catalyzes the reduction of cortisone to cortisol in intact cells that also express hexose-6-phosphate dehydrogenase (H6PDH), which provides cofactor NADPH. Besides its role in glucocorticoid metabolism, there is evidence that 11beta-HSD1 is involved in the metabolism of 7-keto- and 7-hydroxy-steroids; however the impact of H6PDH on this alternative function of 11beta-HSD1 has not been assessed. METHODOLOGY: We investigated the 11beta-HSD1-dependent metabolism of the neurosteroids 7-keto-, 7alpha-hydroxy- and 7beta-hydroxy-dehydroepiandrosterone (DHEA) and 7-keto- and 7beta-hydroxy-pregnenolone, respectively, in the absence or presence of H6PDH in intact cells. 3D-structural modeling was applied to study the binding of ligands in 11beta-HSD1. PRINCIPAL FINDINGS: We demonstrated that 11beta-HSD1 functions in a reversible way and efficiently catalyzed the interconversion of these 7-keto- and 7-hydroxy-neurosteroids in intact cells. In the presence of H6PDH, 11beta-HSD1 predominantly converted 7-keto-DHEA and 7-ketopregnenolone into their corresponding 7beta-hydroxy metabolites, indicating a role for H6PDH and 11beta-HSD1 in the local generation of 7beta-hydroxy-neurosteroids. 3D-structural modeling offered an explanation for the preferred formation of 7beta-hydroxy-neurosteroids. CONCLUSIONS: Our results from experiments determining the steady state concentrations of glucocorticoids or 7-oxygenated neurosteroids suggested that the equilibrium between cortisone and cortisol and between 7-keto- and 7-hydroxy-neurosteroids is regulated by 11beta-HSD1 and greatly depends on the coexpression with H6PDH. Thus, the impact of H6PDH on 11beta-HSD1 activity has to be considered for understanding both glucocorticoid and neurosteroid action in different tissues

    Altering the trajectory of early postnatal cortical development can lead to structural and behavioural features of autism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autism is a behaviourally defined neurodevelopmental disorder with unknown etiology. Recent studies in autistic children consistently point to neuropathological and functional abnormalities in the temporal association cortex (TeA) and its associated structures. It has been proposed that the trajectory of postnatal development in these regions may undergo accelerated maturational alterations that predominantly affect sensory recognition and social interaction. Indeed, the temporal association regions that are important for sensory recognition and social interaction are one of the last regions to mature suggesting a potential vulnerability to early maturation. However, direct evaluation of the emerging hypothesis that an altered time course of early postnatal development can lead to an ASD phenotype remains lacking.</p> <p>Results</p> <p>We used electrophysiological, histological, and behavioural techniques to investigate if the known neuronal maturational promoter valproate, similar to that in culture systems, can influence the normal developmental trajectory of TeA <it>in vivo</it>. Brain sections obtained from postnatal rat pups treated with VPA <it>in vivo </it>revealed that almost 40% of cortical cells in TeA prematurely exhibited adult-like intrinsic electrophysiological properties and that this was often associated with gross cortical hypertrophy and a reduced predisposition for social play behaviour.</p> <p>Conclusions</p> <p>The co-manifestation of these functional, structural and behavioural features suggests that alteration of the developmental time course in certain high-order cortical networks may play an important role in the neurophysiological basis of autism.</p
    corecore