131 research outputs found

    Bystander effects of nitric oxide in cellular models of anti-tumor photodynamic therapy

    Get PDF
    Tumor cells exposed to stress-inducing radiotherapy or chemotherapy can send signals to non- or minimally exposed bystander cells. Bystander effects of ionizing radiation are well established, but little is known about such effects in non-ionizing photodynamic therapy (PDT). Our previous studies revealed that several cancer cell types upregulate inducible nitric oxide synthase (iNOS) and nitric oxide (NO) after a moderate 5-aminolevulinic acid (ALA)-based PDT challenge. The NO signaled for cell resistance to photokilling as well as greater growth, migration and invasion of surviving cells. Based on this work, we hypothesized that diffusible NO produced by PDT-targeted cells in a tumor might elicit pro-growth/migration responses in non-targeted bystander cells. In the present study, we tested this using a novel approach, in which ALA-PDT-targeted human cancer cells on culture dishes (prostate PC3, breast MDA-MB-231, glioma U87, or melanoma BLM) were initially segregated from non-targeted bystanders via impermeable silicone-rimmed rings. Several hours after LED irradiation, rings were removed, and both cell populations analyzed for various post-hν responses. For a moderate and uniform level of targeted cell killing by PDT (~25%), bystander proliferation and migration were both enhanced. Enhancement correlated with iNOS/NO upregulation in surviving targeted cells in the following order: PC3 > MDA-MB-231 > U87 > BLM. If occurring in an actual tumor PDT setting and not suppressed (e.g., by iNOS activity or transcription inhibitors), then such effects could compromise treatment efficacy or even stimulate disease progression if PDT’s anti-tumor potency is not great enough

    Protection of Melanized Cryptococcus neoformans from Lethal Dose Gamma Irradiation Involves Changes in Melanin's Chemical Structure and Paramagnetism

    Get PDF
    Certain fungi thrive in highly radioactive environments including the defunct Chernobyl nuclear reactor. Cryptococcus neoformans (C. neoformans), which uses L-3,4-dihydroxyphenylalanine (L-DOPA) to produce melanin, was used here to investigate how gamma radiation under aqueous aerobic conditions affects the properties of melanin, with the aim of gaining insight into its radioprotective role. Exposure of melanized fungal cell in aqueous suspensions to doses of γ-radiation capable of killing 50 to 80% of the cells did not lead to a detectable loss of melanin integrity according to EPR spectra of melanin radicals. Moreover, upon UV-visible (Xe-lamp) illumination of melanized cells, the increase in radical population was unchanged after γ-irradiation. Gamma-irradiation of frozen cell suspensions and storage of samples for several days at 77 K however, produced melanin modification noted by a reduced radical population and reduced photoresponse. More direct evidence for structural modification of melanin came from the detection of soluble products with absorbance maxima near 260 nm in supernatants collected after γ-irradiation of cells and cell-free melanin. These products, which include thiobarbituric acid (TBA)-reactive aldehydes, were also generated by Fenton reagent treatment of cells and cell-free melanin. In an assay of melanin integrity based on the metal (Bi+3) binding capacity of cells, no detectable loss in binding was detected after γ-irradiation. Our results show that melanin in C. neoformans cells is susceptible to some damage by hydroxyl radical formed in lethal radioactive aqueous environments and serves a protective role in melanized fungi that involves sacrificial breakdown

    Optimal algorithms for seeking the minimum

    No full text
    .The definition of the optimality of an algorithm is modified so that the optimal algorithm satisfies Bellman's principle. The search for a minimum using this technique is compared with J. Kiefer's algorith

    Nitric oxide-elicited resistance to anti-glioblastoma photodynamic therapy

    No full text
    Glioblastoma multiforme is a highly aggressive primary brain malignancy that resists most conventional chemo- and radiotherapeutic interventions. Nitric oxide (NO), a short lived free radical molecule produced by inducible NO synthase (iNOS) in glioblastomas and other tumors, is known to play a key role in tumor persistence, progression, and chemo/radiotherapy resistance. Site-specific and minimally invasive photodynamic therapy (PDT), based on oxidative damage resulting from non-ionizing photoactivation of a sensitizing agent, is highly effective against glioblastoma, but resistance also exists in this case. Studies in the authors’ laboratory have shown that much of the latter is mediated by iNOS/NO. For example, when glioblastoma U87 or U251 cells sensitized in mitochondria with 5-aminolevulinic acid -induced protoporphyrin IX were exposed to a moderate dose of visible light, the observed apoptosis was strongly enhanced by an iNOS activity inhibitor or NO scavenger, indicating that iNOS/NO had increased cell resistance to photokilling. Moreover, cells that survived the photochallenge proliferated, migrated, and invaded more aggressively than controls, and these responses were also driven predominantly by iNOS/NO. Photostress-upregulated iNOS rather than basal enzyme was found to be responsible for all the negative effects described. Recognition of NO-mediated hyper-resistance/hyper-aggression in PDT-stressed glioblastoma has stimulated interest in how these responses can be prevented or at least minimized by pharmacologic adjuvants such as inhibitors of iNOS activity or transcription. Recent developments along these lines and their clinical potential for improving anti-glioblastoma PDT are discussed
    corecore