3,293 research outputs found

    Photon emission by ultra-relativistic positrons in crystalline undulators: the high-energy regime

    Get PDF
    This paper discusses the undulator radiation emitted by high-energy positrons during planar channeling in periodically bent crystals. We demonstrate that the construction of the undulator for positrons with energies of 10 GeV and above is only possible if one takes into account the radiative energy losses. The frequency of the undulator radiation depends on the energy of the particle. Thus the decrease of the particle's energy during the passage of the crystal should result in the destruction of the undulator radiation regime. However, we demonstrate that it is possible to avoid the destructive influence of the radiative losses on the frequency of the undulator radiation by the appropriate variation of the shape of the crystal channels. We also discuss a method by which, to our mind, it would be possible to prepare the crystal with the desired properties of its channels.Comment: submitted for the proceedings of the International Workshop on ``Electron-Photon Interaction in Dense Media'' in Nor-Hamberd, Armenia, 2001; 10 pages, 9 figures, LaTe

    Spontaneous and stimulated undulator radiation by an ultra-relativistic positron channeling in a periodically bent crystal

    Get PDF
    We discuss the radiation generated by positrons channeling in a crystalline undulator. The undulator is produced by periodically bending a single crystal with an amplitude much larger than the interplanar spacing. Different approaches for bending the crystal are described and the restrictions on the parameters of the bending are discussed. We also present numeric calculations of the spontaneous emitted radiation and estimate the conditions for stimulated emission. Our investigations show that the proposed mechanism could be an interesting source for high energy photons and is worth to be studied experimentally.Comment: long version of our contribution to the 22nd International Free Electron Laser Conference, Durham, NC, USA, 13-18 August 2000, Reprinted from Nuclear Instruments and Methods A, Volume 474, 1--3, in press, with permission from Elsevier Science. http://www.elsevier.com/locate/nim

    Channeling of Charged Particles Through Periodically Bent Crystals: on the Possibility of a Gamma Laser

    Full text link
    We discuss radiation generated by positrons channeling in a crystalline undulator. The undulator is produced by periodically bending a single crystal with an amplitude much larger than the interplanar spacing. Different approaches for bending the crystal are described and the restrictions on the parameters of the bending are established. We present the results of numeric calculations of the spectral distributions of the spontaneous emitted radiation and estimate the conditions for stimulated emission. Our investigations show that the proposed mechanism provides an efficient source for high energy photons, which is worth to be studied experimentally.Comment: contributed to the conference ``Fundamental and Applied Aspects of Modern Physics'' in Luederitz, Namibia, 200

    Total energy losses due to the radiation in an acoustically based undulator: the undulator and the channeling radiation included

    Get PDF
    This paper is devoted to the investigation of the radiation energy losses of an ultra-relativistic charged particle channeling along a crystal plane which is periodically bent by a transverse acoustic wave. In such a system there are two essential mechanisms leading to the photon emission. The first one is the ordinary channeling radiation. This radiation is generated as a result of the transverse oscillatory motion of the particle in the channel. The second one is the acoustically induced radiation. This radiation is emitted because of the periodic bending of the particle's trajectory created by the acoustic wave. The general formalism described in our work is applicable for the calculation of the total radiative losses accounting for the contributions of both radiation mechanisms. We analyze the relative importance of the two mechanisms at various amplitudes and lengths of the acoustic wave and the energy of the projectile particle. We establish the ranges of projectile particle energies, in which total energy loss is small for the LiH, C, Si, Ge, Fe and W crystals. This result is important for the determination of the projectile particle energy region, in which acoustically induced radiation of the undulator type and also the stimulated photon emission can be effectively generated. The latter effects have been described in our previous works

    Electron-based crystalline undulator

    Full text link
    We discuss the features of a crystalline undulator of the novel type based on the effect of a planar channeling of ultra-relativistic electrons in a periodically bent crystals. It is demonstrated that an electron-based undulator is feasible in the tens of GeV range of the beam energies, which is noticeably higher than the energy interval allowed in a positron-based undulator. Numerical analysis of the main parameters of the undulator as well as the characteristics of the emitted undulator radiation is carried out for 20 and 50 GeV electrons channeling in diamond and silicon crystals along the (111) crystallographic planes.Comment: 16 pages, 8 figures, Latex, IOP styl

    Coherent radiation of an ultra-relativistic charged particle channeled in a periodically bent crystal

    Full text link
    We suggest a new type of the undulator radiation which is generated by an ultra-relativistic particle channeled along a periodically bent crystallographic plane or axis. The electromagnetic radiation arises mainly due to the bending of the particle's trajectory, which follows the shape of the channel. The parameters of this undulator, which totally define the spectrum and the angular distribution of the radiation (both spontaneous and stimulated), depend on the type of the crystal and the crystallographic plane (axis), on the type of a projectile and its energy, and on the shape of the bent channel, and, thus, can be varied significantly by varying these characteristics. As an example, we consider the acoustically induced radiation (AIR) which is generated by ultra-relativistic particles channeled in a crystal which is bent by a transverse acoustic wave. The AIR mechanism allows to make the undulator with the main parameters varying in wide ranges, which are inaccessible in the undulators based on the motion of particles in the periodic magnetic fields and also in the field of the laser radiation. The intensity of AIR can be easily made larger than the intensity of the radiation in a linear crystal and can be varied in a wide range by varying the frequency and the amplitude of the acoustic wave in the crystal. A possibility to generate stimulated emission of high-energy photons (in keV - MeV region) is also discussed.Comment: published in J. Phys. G: Nucl. Part. Phys. 24 (1998) L45-L53, http://www.iop.or

    Three-photon detachment of electrons from the fluorine negative ion

    Get PDF
    Absolute three-photon detachment cross sections are calculated for the fluorine negative ion within the lowest-order perturbation theory. The Dyson equation of the atomic many-body theory is used to obtain the ground-state 2p wavefunction with correct asymptotic behaviour, corresponding to the true (experimental) binding energy. We show that in accordance with the adiabatic theory (Gribakin and Kuchiev 1997 {Phys. Rev. A} {\bf 55} 3760) this is crucial for obtaining absolute values of the multiphoton cross sections. Comparisons with other calculations and experimental data are presented.Comment: 10 pages, two figures, Latex, IOP styl
    • …
    corecore