36 research outputs found

    On the Plants Leaves Boundary, "Jupe \`a Godets" and Conformal Embeddings

    Full text link
    The stable profile of the boundary of a plant's leaf fluctuating in the direction transversal to the leaf's surface is described in the framework of a model called a "surface \`a godets". It is shown that the information on the profile is encoded in the Jacobian of a conformal mapping (the coefficient of deformation) corresponding to an isometric embedding of a uniform Cayley tree into the 3D Euclidean space. The geometric characteristics of the leaf's boundary (like the perimeter and the height) are calculated. In addition a symbolic language allowing to investigate statistical properties of a "surface \`a godets" with annealed random defects of curvature of density qq is developed. It is found that at q=1q=1 the surface exhibits a phase transition with critical exponent α=1/2\alpha=1/2 from the exponentially growing to the flat structure.Comment: 17 pages (revtex), 8 eps-figures, to appear in Journal of Physics

    Divergent Perturbation Series

    Full text link
    Various perturbation series are factorially divergent. The behavior of their high-order terms can be found by Lipatov's method, according to which they are determined by the saddle-point configurations (instantons) of appropriate functional integrals. When the Lipatov asymptotics is known and several lowest order terms of the perturbation series are found by direct calculation of diagrams, one can gain insight into the behavior of the remaining terms of the series. Summing it, one can solve (in a certain approximation) various strong-coupling problems. This approach is demonstrated by determining the Gell-Mann - Low functions in \phi^4 theory, QED, and QCD for arbitrary coupling constants. An overview of the mathematical theory of divergent series is presented, and interpretation of perturbation series is discussed. Explicit derivations of the Lipatov asymptotic forms are presented for some basic problems in theoretical physics. A solution is proposed to the problem of renormalon contributions, which hampered progress in this field in the late 1970s. Practical schemes for summation of perturbation series are described for a coupling constant of order unity and in the strong-coupling limit. An interpretation of the Borel integral is given for 'non-Borel-summable' series. High-order corrections to the Lipatov asymptotics are discussed.Comment: Review article, 45 pages, PD

    Differentiation und Integration komplexer Funktionen

    No full text

    Inviscid Potential Flows

    No full text
    corecore