887 research outputs found

    Precise Critical Exponents for the Basic Contact Process

    Full text link
    We calculated some of the critical exponents of the directed percolation universality class through exact numerical diagonalisations of the master operator of the one-dimensional basic contact process. Perusal of the power method together with finite-size scaling allowed us to achieve a high degree of accuracy in our estimates with relatively little computational effort. A simple reasoning leading to the appropriate choice of the microscopic time scale for time-dependent simulations of Markov chains within the so called quantum chain formulation is discussed. Our approach is applicable to any stochastic process with a finite number of absorbing states.Comment: LaTeX 2.09, 9 pages, 1 figur

    On-the-fly Uniformization of Time-Inhomogeneous Infinite Markov Population Models

    Full text link
    This paper presents an on-the-fly uniformization technique for the analysis of time-inhomogeneous Markov population models. This technique is applicable to models with infinite state spaces and unbounded rates, which are, for instance, encountered in the realm of biochemical reaction networks. To deal with the infinite state space, we dynamically maintain a finite subset of the states where most of the probability mass is located. This approach yields an underapproximation of the original, infinite system. We present experimental results to show the applicability of our technique

    Teleportation of geometric structures in 3D

    Full text link
    Simplest quantum teleportation algorithms can be represented in geometric terms in spaces of dimensions 3 (for real state-vectors) and 4 (for complex state-vectors). The geometric representation is based on geometric-algebra coding, a geometric alternative to the tensor-product coding typical of quantum mechanics. We discuss all the elementary ingredients of the geometric version of the algorithm: Geometric analogs of states and controlled Pauli gates. Fully geometric presentation is possible if one employs a nonstandard representation of directed magnitudes, formulated in terms of colors defined via stereographic projection of a color wheel, and not by means of directed volumes.Comment: typos corrected, one plot remove

    Search for charged Higgs decays of the top quark using hadronic tau decays

    Full text link
    We present the result of a search for charged Higgs decays of the top quark, produced in ppˉp\bar{p} collisions at √s=\surd s = 1.8 TeV. When the charged Higgs is heavy and decays to a tau lepton, which subsequently decays hadronically, the resulting events have a unique signature: large missing transverse energy and the low-charged-multiplicity tau. Data collected in the period 1992-1993 at the Collider Detector at Fermilab, corresponding to 18.7±\pm0.7~pb−1^{-1}, exclude new regions of combined top quark and charged Higgs mass, in extensions to the standard model with two Higgs doublets.Comment: uuencoded, gzipped tar file of LaTeX and 6 Postscript figures; 11 pp; submitted to Phys. Rev.

    Inclusive jet cross section in pˉp{\bar p p} collisions at s=1.8\sqrt{s}=1.8 TeV

    Full text link
    The inclusive jet differential cross section has been measured for jet transverse energies, ETE_T, from 15 to 440 GeV, in the pseudorapidity region 0.1â‰€âˆŁÎ·âˆŁâ‰€\leq | \eta| \leq 0.7. The results are based on 19.5 pb−1^{-1} of data collected by the CDF collaboration at the Fermilab Tevatron collider. The data are compared with QCD predictions for various sets of parton distribution functions. The cross section for jets with ET>200E_T>200 GeV is significantly higher than current predictions based on O(αs3\alpha_s^3) perturbative QCD calculations. Various possible explanations for the high-ETE_T excess are discussed.Comment: 8 pages with 2 eps uu-encoded figures Submitted to Physical Review Letter

    Measurement of the lepton charge asymmetry in W-boson decays produced in p-pbar collisions

    Full text link
    We describe a measurement of the charge asymmetry of leptons from W boson decays in the rapidity range 0 enu, munu events from 110+/-7 pb^{-1}of data collected by the CDF detector during 1992-95. The asymmetry data constrain the ratio of d and u quark momentum distributions in the proton over the x range of 0.006 to 0.34 at Q2 \approx M_W^2. The asymmetry predictions that use parton distribution functions obtained from previously published CDF data in the central rapidity region (0.0<|y_l|<1.1) do not agree with the new data in the large rapidity region (|y_l|>1.1).Comment: 13 pages, 3 tables, 1 figur

    Search for a Fourth-Generation Quark More Massive than the Z0 Boson in ppbar Collisions at sqrt(s) = 1.8 TeV

    Get PDF
    We present the results of a search for pair production of a fourth-generation charge -1/3 quark (b') in sqrt(s)=1.8 TeV ppbar collisions using 88 pb^(-1) of data obtained with the Collider Detector at Fermilab. We assume that both quarks decay via the flavor-changing neutral current process b' -> bZ and that the b' mass is greater than m_Z + m_b. We studied the decay mode b'b'bar -> ZZ b bbar where one Z0 decays into e^+e^- or mu^+ mu^- and the other decays hadronically, giving a signature of two leptons plus jets. An upper limit on the cross section of ppbar -> b'b'bar times [BR (b' -> bZ)]^2 is established as a function of the b' mass. We exclude at 95% confidence level a b' quark with mass between 100 and 199 GeV/c^2 for BR(b' -> bZ) = 100%.Comment: 12 pages, 2 figures, submitted to Phys. Rev. Letters on 9/12/9

    Production of Y(1S) Mesons from chib Decays in pp(bar) Collisions at sqrt(s)=1.8 TeV

    Full text link
    We have reconstructed the radiative decays χb(1P)→΄(1S)Îł\chi_{b}(1P) \to \Upsilon(1S) \gamma and χb(2P)→΄(1S)Îł\chi_{b}(2P) \to \Upsilon(1S) \gamma in ppˉp \bar{p} collisions at s=1.8\sqrt{s} = 1.8 TeV, and measured the fraction of ΄(1S)\Upsilon(1S) mesons that originate from these decays. For ΄(1S)\Upsilon(1S) mesons with pT΄>8.0p^{\Upsilon}_{T}>8.0 GeV/cc, the fractions that come from χb(1P)\chi_{b}(1P) and χb(2P)\chi_{b}(2P) decays are (27.1±6.9(stat)±4.4(sys))(27.1\pm6.9(stat)\pm4.4(sys))% and (10.5±4.4(stat)±1.4(sys))(10.5\pm4.4(stat)\pm1.4(sys))%, respectively. We have derived the fraction of directly produced ΄(1S)\Upsilon(1S) mesons to be (50.9±8.2(stat)±9.0(sys))(50.9\pm8.2(stat)\pm9.0(sys))%.Comment: 13 Pages, 2 figure

    Measurement of Dijet Angular Distributions at CDF

    Get PDF
    We have used 106 pb^-1 of data collected in proton-antiproton collisions at sqrt(s)=1.8 TeV by the Collider Detector at Fermilab to measure jet angular distributions in events with two jets in the final state. The angular distributions agree with next to leading order (NLO) predictions of Quantum Chromodynamics (QCD) in all dijet invariant mass regions. The data exclude at 95% confidence level (CL) a model of quark substructure in which only up and down quarks are composite and the contact interaction scale is Lambda_ud(+) < 1.6 TeV or Lambda_ud(-) < 1.4 TeV. For a model in which all quarks are composite the excluded regions are Lambda(+) < 1.8 TeV and Lambda(-) < 1. 6 TeV.Comment: 16 pages, 2 figures, 2 tables, LaTex, using epsf.sty. Submitted to Physical Review Letters on September 17, 1996. Postscript file of full paper available at http://www-cdf.fnal.gov/physics/pub96/cdf3773_dijet_angle_prl.p

    Measurement of the Associated Îł+Ό±\gamma + \mu^\pm Production Cross Section in ppˉp \bar p Collisions at s=1.8\sqrt{s} = 1.8 TeV

    Full text link
    We present the first measurement of associated direct photon + muon production in hadronic collisions, from a sample of 1.8 TeV ppˉp \bar p collisions recorded with the Collider Detector at Fermilab. Quantum chromodynamics (QCD) predicts that these events are primarily from the Compton scattering process cg→cÎłcg \to c\gamma, with the final state charm quark producing a muon. Hence this measurement is sensitive to the charm quark content of the proton. The measured cross section of 29±9pb−129\pm 9 pb^{-1} is compared to a leading-order QCD parton shower model as well as a next-to-leading-order QCD calculation.Comment: 12 pages, 4 figures Added more detailed description of muon background estimat
    • 

    corecore