252 research outputs found

    Cyclooxygenase-2 expression is associated with the renal macula densa of patients with Bartter-like syndrome

    Get PDF
    Cyclooxygenase-2 expression is associated with the renal macula densa of patients with Bartter-like syndrome.BackgroundBartter-like syndrome (BLS) is a heterogeneous set of congenital tubular disorders that is associated with significant renal salt and water loss. The syndrome is also marked by increased urinary prostaglandin E2 (PGE2) excretion. In rodents, salt and volume depletion are associated with increased renal macula densa cyclooxygenase-2 (COX-2) expression. The expression of COX-2 in human macula densa has not been demonstrated. The present studies examined whether COX-2 can be detected in macula densa from children with salt-wasting BLS versus control tissues.MethodsThe intrarenal distribution of COX-2 protein and mRNA was analyzed by immunohistochemistry and in situ hybridization in 12 patients with clinically and/or genetically confirmed BLS. Renal tissue rejected for transplantation, from six adult patients not affected by BLS, was also examined.ResultsThe expression of COX-2 immunoreactive protein was observed in cells of the macula densa in 8 out 11 patients with BLS. In situ hybridization confirmed the expression of COX-2 mRNA in the macula densa in 6 out of 10 cases. COX-2 protein was also detected in the macula densa in a patient with congestive heart failure. The expression of COX-2 immunoreactive protein was not observed in cells associated with the macula densa in kidneys from patients without disorders associated with hyper-reninemia.ConclusionThese studies demonstrate that COX-2 may be detected in the macula densa of humans. Since macula densa COX-2 was detected in cases of BLS, renal COX-2 expression may be linked to volume and renin status in humans, as well as in animals

    QSRA – a quality-value guided de novo short read assembler

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>New rapid high-throughput sequencing technologies have sparked the creation of a new class of assembler. Since all high-throughput sequencing platforms incorporate errors in their output, short-read assemblers must be designed to account for this error while utilizing all available data.</p> <p>Results</p> <p>We have designed and implemented an assembler, Quality-value guided Short Read Assembler, created to take advantage of quality-value scores as a further method of dealing with error. Compared to previous published algorithms, our assembler shows significant improvements not only in speed but also in output quality.</p> <p>Conclusion</p> <p>QSRA generally produced the highest genomic coverage, while being faster than VCAKE. QSRA is extremely competitive in its longest contig and N50/N80 contig lengths, producing results of similar quality to those of EDENA and VELVET. QSRA provides a step closer to the goal of de novo assembly of complex genomes, improving upon the original VCAKE algorithm by not only drastically reducing runtimes but also increasing the viability of the assembly algorithm through further error handling capabilities.</p

    Subtyping sub-Saharan esophageal squamous cell carcinoma by comprehensive molecular analysis

    Get PDF
    Esophageal squamous cell carcinoma (ESCC) is endemic in regions of sub-Saharan Africa (SSA), where it is the third most common cancer. Here, we describe whole-exome tumor/normal sequencing and RNA transcriptomic analysis of 59 patients with ESCC in Malawi. We observed similar genetic aberrations as reported in Asian and North American cohorts, including mutations of TP53, CDKN2A, NFE2L2, CHEK2, NOTCH1, FAT1, and FBXW7. Analyses for nonhuman sequences did not reveal evidence for infection with HPV or other occult pathogens. Mutational signature analysis revealed common signatures associated with aging, cytidine deaminase activity (APOBEC), and a third signature of unknown origin, but signatures of inhaled tobacco use, aflatoxin and mismatch repair were notably absent. Based on RNA expression analysis, ESCC could be divided into 3 distinct subtypes, which were distinguished by their expression of cell cycle and neural transcripts. This study demonstrates discrete subtypes of ESCC in SSA, and suggests that the endemic nature of this disease reflects exposure to a carcinogen other than tobacco and oncogenic viruses

    De novo assembly using low-coverage short read sequence data from the rice pathogen Pseudomonas syringae pv. oryzae

    Get PDF
    We developed a novel approach for de novo genome assembly using only sequence data from high-throughput short read sequencing technologies. By combining data generated from 454 Life Sciences (Roche) and Illumina (formerly known as Solexa sequencing) sequencing platforms, we reliably assembled genomes into large scaffolds at a fraction of the traditional cost and without use of a reference sequence. We applied this method to two isolates of the phytopathogenic bacteria Pseudomonas syringae. Sequencing and reassembly of the well-studied tomato and Arabidopsis pathogen, PtoDC3000, facilitated development and testing of our method. Sequencing of a distantly related rice pathogen, Por1_6, demonstrated our method's efficacy for de novo assembly of novel genomes. Our assembly of Por1_6 yielded an N50 scaffold size of 531,821 bp with >75% of the predicted genome covered by scaffolds over 100,000 bp. One of the critical phenotypic differences between strains of P. syringae is the range of plant hosts they infect. This is largely determined by their complement of type III effector proteins. The genome of Por1_6 is the first sequenced for a P. syringae isolate that is a pathogen of monocots, and, as might be predicted, its complement of type III effectors differs substantially from the previously sequenced isolates of this species. The genome of Por1_6 helps to define an expansion of the P. syringae pan-genome, a corresponding contraction of the core genome, and a further diversification of the type III effector complement for this important plant pathogen species

    Circular RNAs are abundant, conserved, and associated with ALU repeats

    Get PDF
    Circular RNAs composed of exonic sequence have been described in a small number of genes. Thought to result from splicing errors, circular RNA species possess no known function. To delineate the universe of endogenous circular RNAs, we performed high-throughput sequencing (RNA-seq) of libraries prepared from ribosome-depleted RNA with or without digestion with the RNA exonuclease, RNase R. We identified >25,000 distinct RNA species in human fibroblasts that contained non-colinear exons (a “backsplice”) and were reproducibly enriched by exonuclease degradation of linear RNA. These RNAs were validated as circular RNA (ecircRNA), rather than linear RNA, and were more stable than associated linear mRNAs in vivo. In some cases, the abundance of circular molecules exceeded that of associated linear mRNA by >10-fold. By conservative estimate, we identified ecircRNAs from 14.4% of actively transcribed genes in human fibroblasts. Application of this method to murine testis RNA identified 69 ecircRNAs in precisely orthologous locations to human circular RNAs. Of note, paralogous kinases HIPK2 and HIPK3 produce abundant ecircRNA from their second exon in both humans and mice. Though HIPK3 circular RNAs contain an AUG translation start, it and other ecircRNAs were not bound to ribosomes. Circular RNAs could be degraded by siRNAs and, therefore, may act as competing endogenous RNAs. Bioinformatic analysis revealed shared features of circularized exons, including long bordering introns that contained complementary ALU repeats. These data show that ecircRNAs are abundant, stable, conserved and nonrandom products of RNA splicing that could be involved in control of gene expression

    Analysis of quality raw data of second generation sequencers with Quality Assessment Software

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Second generation technologies have advantages over Sanger; however, they have resulted in new challenges for the genome construction process, especially because of the small size of the reads, despite the high degree of coverage. Independent of the program chosen for the construction process, DNA sequences are superimposed, based on identity, to extend the reads, generating contigs; mismatches indicate a lack of homology and are not included. This process improves our confidence in the sequences that are generated.</p> <p>Findings</p> <p>We developed Quality Assessment Software, with which one can review graphs showing the distribution of quality values from the sequencing reads. This software allow us to adopt more stringent quality standards for sequence data, based on quality-graph analysis and estimated coverage after applying the quality filter, providing acceptable sequence coverage for genome construction from short reads.</p> <p>Conclusions</p> <p>Quality filtering is a fundamental step in the process of constructing genomes, as it reduces the frequency of incorrect alignments that are caused by measuring errors, which can occur during the construction process due to the size of the reads, provoking misassemblies. Application of quality filters to sequence data, using the software Quality Assessment, along with graphing analyses, provided greater precision in the definition of cutoff parameters, which increased the accuracy of genome construction.</p

    Evaluation of Methods for De Novo Genome Assembly from High-Throughput Sequencing Reads Reveals Dependencies That Affect the Quality of the Results

    Get PDF
    Recent developments in high-throughput sequencing technology have made low-cost sequencing an attractive approach for many genome analysis tasks. Increasing read lengths, improving quality and the production of increasingly larger numbers of usable sequences per instrument-run continue to make whole-genome assembly an appealing target application. In this paper we evaluate the feasibility of de novo genome assembly from short reads (≤100 nucleotides) through a detailed study involving genomic sequences of various lengths and origin, in conjunction with several of the currently popular assembly programs. Our extensive analysis demonstrates that, in addition to sequencing coverage, attributes such as the architecture of the target genome, the identity of the used assembly program, the average read length and the observed sequencing error rates are powerful variables that affect the best achievable assembly of the target sequence in terms of size and correctness

    Bartter- and Gitelman-like syndromes: salt-losing tubulopathies with loop or DCT defects

    Get PDF
    Salt-losing tubulopathies with secondary hyperaldosteronism (SLT) comprise a set of well-defined inherited tubular disorders. Two segments along the distal nephron are primarily involved in the pathogenesis of SLTs: the thick ascending limb of Henle’s loop, and the distal convoluted tubule (DCT). The functions of these pre- and postmacula densa segments are quite distinct, and this has a major impact on the clinical presentation of loop and DCT disorders – the Bartter- and Gitelman-like syndromes. Defects in the water-impermeable thick ascending limb, with its greater salt reabsorption capacity, lead to major salt and water losses similar to the effect of loop diuretics. In contrast, defects in the DCT, with its minor capacity of salt reabsorption and its crucial role in fine-tuning of urinary calcium and magnesium excretion, provoke more chronic solute imbalances similar to the effects of chronic treatment with thiazides. The most severe disorder is a combination of a loop and DCT disorder similar to the enhanced diuretic effect of a co-medication of loop diuretics with thiazides. Besides salt and water supplementation, prostaglandin E2-synthase inhibition is the most effective therapeutic option in polyuric loop disorders (e.g., pure furosemide and mixed furosemide–amiloride type), especially in preterm infants with severe volume depletion. In DCT disorders (e.g., pure thiazide and mixed thiazide–furosemide type), renin–angiotensin–aldosterone system (RAAS) blockers might be indicated after salt, potassium, and magnesium supplementation are deemed insufficient. It appears that in most patients with SLT, a combination of solute supplementation with some drug treatment (e.g., indomethacin) is needed for a lifetime
    corecore