53,694 research outputs found
The quantization of the chiral Schwinger model based on the BFT-BFV formalism II
We apply an improved version of Batalin-Fradkin-Tyutin (BFT) Hamiltonian
method to the a=1 chiral Schwinger Model, which is much more nontrivial than
the a>1.\delta\xi$ in the measure. As a result, we explicitly
obtain the fully gauge invariant partition function, which includes a new type
of Wess-Zumino (WZ) term irrelevant to the gauge symmetry as well as usual WZ
action.Comment: 17 pages, To be published in J. Phys.
Density Expansion for the Mobility in a Quantum Lorentz Model
We consider the mobility of electrons in an environment of static hard-sphere
scatterers, which provides a realistic description of electrons in Helium gas.
A systematic expansion in the scatterer density is carried to second order
relative to the Boltzmann result, and the analytic contribution at this order
is derived, together with the known logarithmic term in the density expansion.
It is shown that existing experimental data are consistent with the existence
of the logarithmic term in the density expansion, but more precise experiments
are needed in order to unambiguously detect it. We show that our calculations
provide the necessary theoretical information for such an experiment, and give
a detailed discussion of a suitable parameter range.Comment: 17pp., REVTeX, 7 figure attached as 8 postscript files, db/94/
Shuttling of Spin Polarized Electrons in Molecular Transistors
Shuttling of electrons in single-molecule transistors with magnetic leads in
the presence of an external magnetic field is considered theoretically. For a
current of partially spin-polarized electrons a shuttle instability is
predicted to occur for a finite interval of external magnetic field strengths.
The lower critical magnetic field is determined by the degree of spin
polarization and it vanishes as the spin polarization approaches 100%. The
feasibility of detecting magnetic shuttling in a -based molecular
transistor with magnetic (Ni) electrodes is discussed [A.~N.~Pasupathy et al.,
Science 306, 86 (2004)].Comment: Submitted to a special issue of "Synthetic Metals" to appear in March
201
Generalized BFT Formalism of Electroweak Theory in the Unitary Gauge
We systematically embed the SU(2)U(1) Higgs model in the unitary
gauge into a fully gauge-invariant theory by following the generalized BFT
formalism. We also suggest a novel path to get a first-class Lagrangian
directly from the original second-class one using the BFT fields.Comment: 14 pages, Latex, no figure
SPEAR Far Ultraviolet Spectral Images of the Cygnus Loop
We present far-ultraviolet (FUV) spectral images, measured at C IV 1550, He
II 1640, Si IV+O IV] 1400, and O III] 1664, of the entire Cygnus Loop, observed
with the Spectroscopy of Plasma Evolution from Astrophysical Radiation (SPEAR)
instrument, also known as FIMS. The spatial distribution of FUV emission
generally corresponds with a limb-brightened shell, and is similar to optical,
radio and X-ray images. The features found in the present work include a
``carrot'', diffuse interior, and breakout features, which have not been seen
in previous FUV studies. Shock velocities of 140-160 km/s is found from a line
ratio of O IV] to O III], which is insensitive not only to resonance scattering
but also to elemental abundance. The estimated velocity indicates that the fast
shocks are widespread across the remnant. By comparing various line ratios with
steady-state shock models, it is also shown that the resonance scattering is
widespread.Comment: 13 pages, 3 figures, 1 table, accepted for publication in ApJ
Single-electron shuttle based on electron spin
A nanoelectromechanical device based on magnetic exchange forces and electron spin flips induced by a weak external magnetic field is suggested. It is shown that this device can operate as a new type of single-electron "shuttle" in the Coulomb blockade regime of electron transport
Efficiency of broadband four-wave mixing wavelength conversion using semiconductor traveling-wave amplifiers
We present a theoretical analysis and experimental measurements of broadband optical wavelength conversion by four-wave mixing in semiconductor traveling-wave amplifiers. In the theoretical analysis, we obtain an analytical expression for the conversion efficiency. In the experiments, both up and down-conversion efficiencies are measured as a function of wavelength shift for shifts up to 27 nm. The experimental data are well explained by the theoretical calculation. The observed higher conversion efficiency for wavelength down-conversion is believed to be caused by phase interferences that exist between various mechanisms contributing to the four-wave mixing process
Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier
Ultrafast dynamics in a 1.5-µm tensile-strained quantum-well optical amplifier has been studied by highly nondegenerate four-wave mixing at detuning frequencies up to 1.7 THz. Frequency response data indicate the presence of two ultrafast physical processes with characteristic relaxation lifetimes of 650 fs and <100 fs. The longer time constant is believed to be associated with the dynamic carrier heating effect. This is in agreement with previous time-domain pump-probe measurements using ultrashort optical pulses
- …