85 research outputs found

    Lateral Sharpening of Cortical Frequency Tuning by Approximately Balanced Inhibition

    Get PDF
    SummaryCortical inhibition plays an important role in shaping neuronal processing. The underlying synaptic mechanisms remain controversial. Here, in vivo whole-cell recordings from neurons in the rat primary auditory cortex revealed that the frequency tuning curve of inhibitory input was broader than that of excitatory input. This results in relatively stronger inhibition in frequency domains flanking the preferred frequencies of the cell and a significant sharpening of the frequency tuning of membrane responses. The less selective inhibition can be attributed to a broader bandwidth and lower threshold of spike tonal receptive field of fast-spike inhibitory neurons than nearby excitatory neurons, although both types of neurons receive similar ranges of excitatory input and are organized into the same tonotopic map. Thus, the balance between excitation and inhibition is only approximate, and intracortical inhibition with high sensitivity and low selectivity can laterally sharpen the frequency tuning of neurons, ensuring their highly selective representation

    Dcc Mediates Functional Assembly of Peripheral Auditory Circuits.

    Get PDF
    Proper structural organization of spiral ganglion (SG) innervation is crucial for normal hearing function. However, molecular mechanisms underlying the developmental formation of this precise organization remain not well understood. Here, we report in the developing mouse cochlea that deleted in colorectal cancer (Dcc) contributes to the proper organization of spiral ganglion neurons (SGNs) within the Rosenthal\u27s canal and of SGN projections toward both the peripheral and central auditory targets. In Dcc mutant embryos, mispositioning of SGNs occurred along the peripheral auditory pathway with misrouted afferent fibers and reduced synaptic contacts with hair cells. The central auditory pathway simultaneously exhibited similar defective phenotypes as in the periphery with abnormal exit of SGNs from the Rosenthal\u27s canal towards central nuclei. Furthermore, the axons of SGNs ascending into the cochlear nucleus had disrupted bifurcation patterns. Thus, Dcc is necessary for establishing the proper spatial organization of SGNs and their fibers in both peripheral and central auditory pathways, through controlling axon targeting and cell migration. Our results suggest that Dcc plays an important role in the developmental formation of peripheral and central auditory circuits, and its mutation may contribute to sensorineural hearing loss

    Sensory processing deficits and related cortical pathological changes in Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD) is a progressive neurodegenerative disorder primarily affecting cognitive functions. However, sensory deficits in AD start to draw attention due to their high prevalence and early onsets which suggest that they could potentially serve as diagnostic biomarkers and even contribute to the disease progression. This literature review examines the sensory deficits and cortical pathological changes observed in visual, auditory, olfactory, and somatosensory systems in AD patients, as well as in various AD animal models. Sensory deficits may emerge at the early stages of AD, or even precede the cognitive decline, which is accompanied by cortical pathological changes including amyloid-beta deposition, tauopathy, gliosis, and alterations in neuronal excitability, synaptic inputs, and functional plasticity. Notably, these changes are more pronounced in sensory association areas and superficial cortical layers, which may explain the relative preservation of basic sensory functions but early display of deficits of higher sensory functions. We propose that sensory impairment and the progression of AD may establish a cyclical relationship that mutually perpetuates each condition. This review highlights the significance of sensory deficits with or without cortical pathological changes in AD and emphasizes the need for further research to develop reliable early detection and intervention through sensory systems

    Immunization with a Mixture of HIV Env DNA and VLP Vaccines Augments Induction of CD8 T Cell Responses

    Get PDF
    The immune response induced by immunization with HIV Env DNA and virus-like particle (VLP) vaccines was investigated. Immunization with the HIV Env DNA vaccine induced a strong CD8 T cell response but relatively weak antibody response against the HIV Env whereas immunization with VLPs induced higher levels of antibody responses but little CD8 T cell response. Interestingly, immunization with a mixture the HIV Env DNA and VLP vaccines induced enhanced CD8 T cell and antibody responses. Further, it was observed that the mixing of DNA and VLP vaccines during immunization is necessary for augmenting induction of CD8 T cell responses and such augmentation of CD8 T cell responses was also observed by mixing the HIV Env DNA vaccine with control VLPs. These results show that immunization with a mixture of DNA and VLP vaccines combines advantages of both vaccine platforms for eliciting high levels of both antibody and CD8 T cell responses

    Laser enhanced high-intensity focused ultrasound thrombolysis: An in vitro study

    Get PDF
    This is the Published Version made available with the permission of the publisher. Copyright, Ecological Society of America.Laser-enhanced thrombolysis by high intensity focused ultrasound (HIFU) treatment was studied in vitro with bovine blood clots. To achieve laser-enhanced thrombolysis, laser light was employed to illuminate the sample concurrently with HIFU radiation, and ultrasound and laser parameters were optimized to achieve better thrombolysis efficiency. The results indicated that the thrombolysis efficiency increased when pulse length of HIFU wave, HIFU pressure, or laser fluence increases. Also, with the presence of laser, an enhanced effect of thrombolysis was observed.This study was supported in part byNIH Grant No. 1R03EB015077-01A1

    Interaural Level Difference-Dependent Gain Control and Synaptic Scaling Underlying Binaural Computation

    Get PDF
    SummaryBinaural integration in the central nucleus of inferior colliculus (ICC) plays a critical role in sound localization. However, its arithmetic nature and underlying synaptic mechanisms remain unclear. Here, we showed in mouse ICC neurons that the contralateral dominance is created by a “push-pull”-like mechanism, with contralaterally dominant excitation and more bilaterally balanced inhibition. Importantly, binaural spiking response is generated apparently from an ipsilaterally mediated scaling of contralateral response, leaving frequency tuning unchanged. This scaling effect is attributed to a divisive attenuation of contralaterally evoked synaptic excitation onto ICC neurons with their inhibition largely unaffected. Thus, a gain control mediates the linear transformation from monaural to binaural spike responses. The gain value is modulated by interaural level difference (ILD) primarily through scaling excitation to different levels. The ILD-dependent synaptic scaling and gain adjustment allow ICC neurons to dynamically encode interaural sound localization cues while maintaining an invariant representation of other independent sound attributes

    A Genetic Strategy for Stochastic Gene Activation with Regulated Sparseness (STARS)

    Get PDF
    It remains a challenge to establish a straightforward genetic approach for controlling the probability of gene activation or knockout at a desired level. Here, we developed a method termed STARS: stochastic gene activation with genetically regulated sparseness. The stochastic expression was achieved by two cross-linked, mutually-exclusive Cre-mediated recombinations. The stochastic level was further controlled by regulating Cre/lox reaction kinetics through varying the intrachromosomal distance between the lox sites mediating one of the recombinations. In mammalian cell lines stably transfected with a single copy of different STARS transgenes, the activation/knockout of reporter genes was specifically controlled to occur in from 5% to 50% of the cell population. STARS can potentially provide a convenient way for genetic labeling as well as gene expression/knockout in a population of cells with a desired sparseness level
    corecore