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SUMMARY

Cortical inhibition plays an important role in shaping
neuronal processing. The underlying synaptic mech-
anisms remain controversial. Here, in vivo whole-cell
recordings from neurons in the rat primary auditory
cortex revealed that the frequency tuning curve of
inhibitory input was broader than that of excitatory
input. This results in relatively stronger inhibition in
frequency domains flanking the preferred frequen-
cies of the cell and a significant sharpening of the
frequency tuning of membrane responses. The less
selective inhibition can be attributed to a broader
bandwidth and lower threshold of spike tonal recep-
tive field of fast-spike inhibitory neurons than nearby
excitatory neurons, although both types of neurons
receive similar ranges of excitatory input and are
organized into the same tonotopic map. Thus, the
balance between excitation and inhibition is only
approximate, and intracortical inhibition with high
sensitivity and low selectivity can laterally sharpen
the frequency tuning of neurons, ensuring their highly
selective representation.

INTRODUCTION

Cortical inhibition plays an important role in shaping receptive

field properties of neurons in sensory cortices (Sillito, 1977,

1979; Kyriazi et al., 1996; Wang et al., 2002). The underlying

synaptic mechanisms remain controversial. This is partially due

to technical limitations, which make it difficult to characterize

the structure of cortical inhibitory circuits and the functional

properties of cortical inhibitory neurons. The recent application

of in vivo whole-cell voltage-clamp recording in the cortex pro-

vides a powerful approach to unraveling excitatory and inhibitory

synaptic input circuits underlying functions of cortical neurons. In

the auditory cortex, two apparently conflicting models have been

proposed for inhibitory sharpening of cortical tonal receptive
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fields (TRFs). First, recent in vivo whole-cell voltage-clamp

recordings from individual auditory cortical neurons indicate

that the frequency preferences as well as the responding

frequency ranges are similar for tone-evoked excitatory and

inhibitory synaptic input. This suggests a synaptic input network

with balanced excitation and inhibition (Zhang et al., 2003; Wehr

and Zador, 2003; Tan et al., 2004; Wu et al., 2006). Because

inhibitory input always follows excitatory input with a brief tem-

poral delay, it is proposed that inhibitory input can scale down

excitation and thus narrow the frequency range for spike

responses in a so-called ‘‘iceberg’’ effect (Wehr and Zador,

2003). Second, it was proposed previously that cortical inhibitory

input may have broader tuning than excitatory input, resulting in

lateral inhibition in the surround of TRFs (Suga and Manabe,

1982; Shamma, 1985; Calford and Semple, 1995; Sutter and

Loftus, 2003; Oswald et al., 2006). This second model is primarily

based on extracellular recording experiments of two-tone sup-

pression, in which one tone modifies (usually suppresses) the

response to a later tone (Suga and Manabe, 1982; Calford and

Semple, 1995; Sutter and Loftus, 2003). Although the response

properties of auditory cortical inhibitory neurons are largely

unknown, several extracellular studies in the somatosensory

cortex suggest that putative cortical inhibitory neurons may

possess less selective representational properties than principal

neurons (Simons and Carvell, 1989; Swadlow, 1989), supporting

the second model.

In previous intracellular studies (Wehr and Zador, 2003; Zhang

et al., 2003; Tan et al., 2004), the patterns of tone-evoked excit-

atory and inhibitory inputs have not been examined in sufficient

detail. Although inhibitory input has been shown to be able to

scale down the level of membrane excitation, no direct compar-

ison has been made between the frequency tuning curves of

membrane potential responses in the presence and absence

of inhibition. Thus, the existence of lateral inhibitory effects

cannot be excluded by the findings on the apparently balanced

excitation and inhibition. In this study, we tested the possibility

that tone-evoked synaptic excitation and inhibition in a single

cortical neuron do not match precisely and that the fine structure

in their distribution patterns can result in an equivalent lateral

inhibitory sharpening of TRFs.
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Studies on the pattern of inhibitory input to a cortical neuron

alone cannot fully address the response properties of presynap-

tic inhibitory neurons, except that the spike TRFs of the presyn-

aptic inhibitory neurons will be no larger than the tonal respon-

sive area defined by the inhibitory inputs to the cell. Because

only 15%–25% of neurons are inhibitory in many cortical areas

(Peters and Kara, 1985; Hendry et al., 1987; Priet et al., 1994)

and it remains difficult to identify and target these neurons

in vivo, our knowledge of their functional properties has lagged

far behind that of excitatory neurons. There have been limited

studies on the functional properties of cortical inhibitory neurons.

In the rabbit somatosensory cortex, extracellular recordings

from suspected inhibitory neurons (SINs), identified according

to their spike features, suggest that SINs lack directional prefer-

ence, unlike principal cells, and exhibit high sensitivity to sensory

stimuli (Swadlow, 2003). In the cat visual cortex, pioneering stud-

ies with intracellular recording and biocytin labeling have re-

ported both simple and complex-cell-like inhibitory neurons,

with their orientation tuning properties ranging from unselective

to tightly tuned (Azouz et al., 1997; Hirsch et al., 2003). By using

Ca2+ imaging, a recent study in superficial layers of mouse visual

cortex suggests that GABAergic neurons exhibit much weaker

orientation selectivity compared to non-GABAergic neurons

(Sohya et al., 2007). Despite limited studies in visual and somato-

sensory cortices, functional properties of inhibitory neurons in

auditory cortex have rarely been examined. Because the sam-

pling bias in the classic ‘‘blind’’ whole-cell recording method

(which prefers larger cells such as pyramidal) and the sparse dis-

tribution of inhibitory neurons prevent effective sampling of these

neurons, in this study, we combined cell-attached recording with

juxtacellular labeling or subsequent intracellular recording to se-

lectively target fast-spike inhibitory neurons, the major source of

local inhibitory input to pyramidal neurons. Our results suggest

that fast-spike inhibitory neurons exhibit broader frequency tun-

ing than excitatory neurons, and this property may contribute to

the equivalent lateral-inhibition effect.

RESULTS

Frequency Tuning Curves of Excitatory
and Inhibitory Inputs
To examine fine structures in the spectral patterns of excitatory

and inhibitory input to auditory cortical neurons, we applied blind

in vivo whole-cell voltage-clamp recordings in the recipient layer

(layer 4) of the rat primary auditory cortex (A1). The blind whole-

cell recording method used under our experimental conditions

resulted in recording exclusively from excitatory neurons, as de-

scribed previously (Wu et al., 2006). The auditory stimuli were

pure tones of various frequencies and intensities, which were

presented in a pseudorandom sequence. Excitatory and inhib-

itory synaptic currents in response to tones were recorded under

the clamping voltages of�70 mV and 0 mV, respectively, the po-

tential levels close to the reversal potential for GABAA receptor

and glutamate receptor-mediated currents, respectively. The

excitatory and inhibitory synaptic conductances were derived

from synaptic currents (see Experimental Procedures). As shown

by an example cell in Figures 1A and 1B, the excitatory and inhib-

itory synaptic TRFs largely overlap with each other, consistent
with previous reports (Zhang et al., 2003; Tan et al., 2004; Wu

et al., 2006). Interestingly, after deriving the envelope of re-

sponse peaks, i.e., the frequency tuning curve, for both excit-

atory and inhibitory synaptic input at 70 dB sound pressure level

(SPL), we observed that the inhibitory frequency tuning curve

was more flattened than that of excitatory input, as reflected

by the faster saturation of conductance magnitude along the fre-

quency domain and the more plateau-like peak of the tuning

curve (Figure 1C). To quantify this effect, we measured the band-

width of the tuning curve at 60% of maximum value (60% BW) for

both excitatory and inhibitory input. At all test intensities above

the subthreshold intensity threshold (20 dB in this cell), the

60% BWs of inhibitory input (Figure 1D, red lines) were consis-

tently broader than those of excitatory input (Figure 1D, black

lines), suggesting that inhibitory input is less selectively tuned.

The less selective inhibitory tuning will presumably generate

relatively more inhibition in frequency regions flanking the peak

of the excitatory tuning curve and result in a narrowing of fre-

quency tuning in a manner analogous to lateral inhibition. To

demonstrate this effect, we derived tone-evoked membrane

potential changes for the same cell with and without considering

inhibitory input (see Experimental Procedures). As shown in

Figure 1E, the tuning curve of derived membrane potential re-

sponses at 70 dB SPL was sharper when excitatory and inhibi-

tory input were integrated than when only excitatory input was

considered. The relative sharpening effect of inhibition was dem-

onstrated by subtracting the normalized membrane potential

tuning curve derived without considering inhibition from that

when inhibition was present (Figure 1E, blue). Apparently stron-

ger inhibitory effect is generated at the flanks of the peak of

membrane excitation, which determines the best frequency of

the cell (Figure 1E).

Lateral Inhibitory Sharpening of Frequency Tuning
For the other ten cells in which both excitatory and inhibitory cur-

rents were recorded, we derived the excitatory and inhibitory fre-

quency tuning curves (Figures 2A and 2B), as well as the tuning

curves of membrane potential changes in the absence and pres-

ence of inhibition (Figure 2C). In all of these cells, the inhibitory

tuning curve exhibited broader bandwidths than the excitatory

tuning curve around its peak, although the responding frequency

range of inhibitory input was similar to or slightly narrower than

that of excitatory input (Figure 2B). In result, the derived mem-

brane potential tuning curves in the presence of inhibition were

narrower around the peak than those in the absence of inhibition

(Figure 2C). By comparing the two normalized membrane poten-

tial tuning curves for each cell, we estimated the relative

suppression effect of inhibition at different tone frequencies. In

all of the cases, suppression tended to increase from the center

of the best frequency on both sides, consistent with the concept

of lateral inhibition or inhibitory sidebands.

The percentage difference in the bandwidth of excitatory and

inhibitory tuning curves at various levels were summarized for all

11 cells (Figure 3). We found that the responding frequency

range (i.e., 0%BW) of inhibitory input was on average slightly nar-

rower than that of excitatory input (Figure 3A). In contrast, inhib-

itory tuning curve was significantly broader at the levels of 40%,

60%, and 80% of maximum amplitude (Figure 3A). This was
Neuron 58, 132–143, April 10, 2008 ª2008 Elsevier Inc. 133
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Figure 1. Frequency Tuning of Synaptic Inputs in an Example A1 Excitatory Neuron
(A and B) (Left) Excitatory (A) and inhibitory (B) synaptic currents recorded in an example neuron at �70 mV and 0 mV, respectively, in response to pure tones of

various frequencies and intensities. Each small trace represents a response to a tone (averaged from two repeats). (Middle) Color maps represent the TRFs of

synaptic responses, with the color of each pixel indicating the peak amplitude of synaptic currents. Inset below the color map shows individual traces (250 ms)

of synaptic currents responding to a best-frequency tone at 40, 50, and 60 dB sound pressure level (SPL). (Right) TRFs of excitatory and inhibitory synaptic

conductances, which were derived from the averaged synaptic currents.

(C) The enlarged profile of excitatory (upper) and inhibitory (middle) conductances at 70 dB SPL for the same cell (cell1). Envelopes, i.e., frequency tuning curves,

were calculated from the peak amplitudes of synaptic conductances and were indicated by the dashed lines. (Bottom) The inhibitory tuning curve was

superimposed with the excitatory curve. The black and red scale values are for the excitatory and inhibitory curve, respectively.

(D) Dotted lines depict the boundary of TRFs of excitatory (black) and inhibitory (red) input for the same cell. Colored solid lines indicate the frequency ranges for

responses with amplitudes larger than 60% of maximum value at each testing intensity. Black, excitatory; red, inhibitory.

(E) Frequency tuning curve of derived peak membrane potential responses when only excitatory input was considered (black) or when both excitatory and

inhibitory inputs were considered (red). The tuning curves are normalized. The subtraction between the two curves is shown by the blue line. Dashed red vertical

line indicates the frequency for the peak response, and the two solid red vertical lines indicate the estimated frequency range of spike responses.
134 Neuron 58, 132–143, April 10, 2008 ª2008 Elsevier Inc.
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Figure 2. Frequency Tunings of Synaptic Inputs in Ten Other Excitatory Neurons in A1

(A) (Left) Derived excitatory (‘‘E’’) and inhibitory (‘‘I’’) synaptic conductances within the responding frequency range (labeled by numbers below) at 70 dB SPL.

(Right) Example traces of excitatory (upper) and inhibitory responses (lower) to a best-frequency tone. Traces are normalized to have the same peak amplitude.

Vertical line indicates the onset of excitatory response. Arrowheads indicate that excitatory currents normally exhibit two phases in their arising kinetics. The

onsets of inhibitory inputs are roughly at the transition between these two phases.

(B) Tuning curves of excitatory (black) and inhibitory (red) conductances were superimposed for comparing their shapes. The black and red scale values are for

excitatory and inhibitory curves, respectively.

(C) Normalized tuning curves of membrane potential changes derived for the cells shown in (A) and (B), with (red) and without (black) considering inhibition. Data

are presented in a similar manner as in Figure 1E.
Neuron 58, 132–143, April 10, 2008 ª2008 Elsevier Inc. 135
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Figure 3. Summary of Frequency Tunings of

Synaptic Inputs and Membrane Potential

Responses

(A) Average percentage difference in bandwidth

between excitatory and inhibitory tuning curves

((In � Ex)/In) at different amplitude levels. Data

are from the 11 cells shown in Figures 1 and 2.

Bar represents SEM. The numbers in the paren-

thesis indicate the ‘‘p’’ values for the statistics

(paired t test, n = 11).

(B) (Left) Average frequency tuning curve of excit-

atory (black) and inhibitory (red) conductances

after normalization (see Experimental Proce-

dures). f�50 and f50 are two reference points for

aligning normalized tuning curves. (Right) Percent-

age difference in bandwidth between the two

averaged tuning curves at different amplitude

levels (step size = 1%). Data point labeled with

red color indicates significant difference (p < 0.05;

two-way ANOVA).

(C) Bandwidths of membrane potential tuning

curves without and with inhibition at 60% of max-

imum amplitude (60% BW). *, paired t test, p <

0.0001, n = 11 cells.

(D) Percentage reduction in bandwidth of

membrane potential tuning curves after integra-

tion of inhibition at the levels of 20%, 40%, 60%,

and 80% of maximum response, summarized for the 11 cells. Bar = SEM. ‘‘p’’ values are indicated in the parenthesis (one-group t test, n = 11).

(E) (Left) Average frequency tuning curve of peak membrane potential changes with (red) or without inhibition (black). Blue line is plotted similarly as that

in Figure 1E. Solid red vertical lines indicate the estimated spiking frequency range. (Right) Percentage reduction in bandwidth along the tuning curves (1%

step) after integrating inhibition, analyzed in the same way as in (B).
further demonstrated by averaging all the normalized synaptic

tuning curves (Figure 3B; see Experimental Procedures). The

broader inhibitory bandwidths at the flanks of the excitatory

tuning peak can result in relatively stronger inhibition around

the excitation peak, as shown by the subtraction of the two

averaged tuning curves. By examining the bandwidths at all

levels (at 1% step), we found that between the levels of 54%

and 88% of maximum amplitude the bandwidths of the average

inhibitory tuning curve were significantly broader than those of

the excitatory tuning curve (n = 11, two-way ANOVA, p < 0.05).

The effect of inhibition on the membrane potential tuning curve

was quantified by comparing the tuning curves of membrane

potential responses generated with and without inhibitory inputs.

In the presence of inhibition, the bandwidths of tuning curves

were significantly reduced at various levels (e.g., 40%, 60%,

and 80% of maximum amplitude) (Figures 3C and 3D). The per-

centage reduction in bandwidth appeared to increase as the

measurement moved closer to the peak of membrane response

tuning curve (Figure 3D). To further demonstrate this effect, the

membrane potential tuning curves generated with and without

inhibition were normalized (in both amplitude and frequency

domains) for all the cells and then were averaged (Figure 3E;

see Experimental Procedures). There was a significant reduction

in bandwidth due to inhibition between the levels of 40% and

78% of peak response (Figure 3E, right). The greatest reduction

appears at the level rather close to the peak (Figure 3E, right).

Here, we also estimated the spike response range in the aver-

aged membrane potential tuning curve, since the spike threshold

was at the level of about 60% of maximum response (Figure 2C;

59.6% ± 5.8%, mean ± SD, n = 11; see Experimental Proce-
136 Neuron 58, 132–143, April 10, 2008 ª2008 Elsevier Inc.
dures). Within the estimated frequency range of spike re-

sponses, the relative suppression increased from the peak of

the tuning curves on both sides. Together, these results demon-

strate that the balance of excitation and inhibition is only approx-

imate and that, in addition to generally reducing excitation, the

more broadly tuned inhibitory input can further sharpen the

frequency representation of cortical neurons by laterally narrow-

ing the tuning curve especially at around the excitation peak.

Fast-Spike Inhibitory Neurons and Regular-Spike
Excitatory Neurons
Why does inhibitory input exhibit less selective frequency tuning

than excitatory input? Our recent study suggests that the shape

of membrane potential tuning curve (especially in the suprathresh-

old frequency ranges) is largely defined by recurrent cortical

excitatory inputs (Liu et al., 2007). Thus, if cortical inhibitory neu-

rons have broader frequency tuning than cortical excitatory

neurons, this can cause broader tuning of inhibitory input. Previ-

ous studies in cortical slices demonstrate that cortical pyramidal

neurons in the input layer primarily receive inhibitory input from

nearby fast-spike inhibitory neurons (Agmon and Connors,

1992; Gil and Amitai, 1996; Gibson et al.,1999; Inoue and Imoto,

2006; Sun et al., 2006). To examine the frequency tuning and

spike TRF of inhibitory neurons, we applied cell-attached record-

ing and juxtacellular labeling (see Experimental Procedures) to

distinguish neuronal types according to the spiking property

and morphology of the recorded cells. With cell-attached

recording, only spikes from the targeted neuron are recorded.

Because the pipette capacitance was completely compensated

in our experiments, distortion of spike waveform was minimized,
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and thus we could compare the spike waveforms from different

recordings. Figure 4A (upper panel) shows two typical types of

spikes, either spontaneously generated or evoked by tone

stimuli. The first type (observed in about 10% of encountered

neurons; see Experimental Procedures) exhibits a relatively large

upward peak and a short peak-to-peak interval, which is defined

as the time interval between the trough and the upward peak of

the spike waveform. The second type has a smaller upward peak

and a longer peak-to-peak interval. According to the distribution

of peak-to-peak intervals (Figure 4B), we arbitrarily categorized

the recorded neurons into two groups: fast-spike (FS, with

peak-to-peak interval <0.6 ms) and regular-spike (RS, with

peak-to-peak interval R0.6 ms) neurons. The average peak-

to-peak interval is 0.35 ± 0.09 ms (mean ± SD; n = 42) for fast-

spike neurons and 0.83 ± 0.12 ms (n = 69) for regular-spike

neurons. The spiking property of FS neurons is consistent with

previous reports of fast-spiking inhibitory neurons (Mountcastle

et al., 1969; Swadlow, 1989; Azouz et al., 1997). The fast-spike

neurons often exhibit a train of action potentials when stimulated

with a brief tone, while regular-spike neurons usually exhibit

single-spike responses (Figure 4A). Based on the morphology

of the recorded cells successfully reconstructed after juxtacellu-

lar labeling or intracellular labeling (see Experimental Proce-

dures), we found that the fast-spike neurons exhibited locally

constrained and smooth dendritic arbors, while typical pyrami-

dal-cell morphology with spiny dendritic arbors were mostly

observed for regular-spike neurons (Figure 4A, lower panel). Pre-

vious studies have shown that fast-spiking neurons are parval-

Figure 4. Cell-Attached Recordings from Fast-Spike

and Regular-Spike Neurons and Juxtacellular Labeling

(A) (Upper panel) Example spike waveform and tone-evoked

spike response in an FS (left) and an RS neuron (right). Two

dashed lines indicate the peak-to-peak interval. Arrowhead

indicates the onset of tone stimulus. (Lower panel) Example

reconstructed dendritic morphologies of neurons labeled by

juxtacellular methods following cell-attached recordings. The

values of their peak-to-peak intervals (ms) are indicated in

the parenthesis.

(B) Distribution of average peak-to-peak intervals from 111

recorded cells. The dashed line indicates the separation

between the groups of FS and RS neurons in this study. Sam-

pling here was not random because we specifically searched

for fast-spike neurons.

(C) Correlation between the CFs of neurons determined from

their spike TRFs and the CFs predicted from their positions

in the tonotopic map, which was determined with multiunit

extracellular recordings.

bumin-positive GABAergic neurons, occupying

about 70% inhibitory neuron population in layer 4

(Kawaguchi and Kubota, 1997; Gonchar and Bur-

khalter, 1997). It is reasonable to assume that the

fast-spike neurons recorded under our condition

were inhibitory and that the regular-spike neurons

were primarily excitatory. Since the characteristic

frequencies (CFs) of the recorded fast-spike and

regular-spike neurons correlate equally well with

the estimated CFs for these cells (predicted according to their

positions in the A1 tonotopic map, see Experimental Proce-

dures), we conclude that inhibitory neurons are organized into

the same tonotopic map as excitatory neurons (Figure 4C). The

same tonotopic map for both excitatory and inhibitory neurons

suggests that the topographic organization of thalamocortical

innervation is independent of cortical neuronal types.

Spike TRFs of Fast-Spike Inhibitory Neurons
Because the majority of inhibitory neurons in layer 4 are fast-

spike neurons, we specifically examined the spike TRFs of this

type of inhibitory neuron. In Figures 5A and 5B, two nearby

fast-spike and regular-spike neurons in the same preparation

were recorded with the cell-attached recording method. Their

complete spike TRFs were reconstructed and compared. The

fast-spike neuron was tuned with a CF close to that of the regu-

lar-spike neuron (2.8 and 1.9 kHz, respectively, see Experimental

Procedures). It appeared that the TRF area of the fast-spike

neuron was larger than that of the regular-spike neuron, with

a lower intensity threshold and broader responding frequency

ranges at all testing intensities. To compare the TRF properties

between fast-spike and regular-spike neurons, a group of FS

and RS neurons were randomly recorded (see Figures S3 and

S4). We arbitrarily divided these cells into two groups according

to their CFs (CF < 6 kHz and CF R 6 kHz) since TRF properties

may also depend on the cell’s CF (Zhang et al., 2001; Polley

et al., 2007). As shown in Figure 5C and Figure S2, the respond-

ing frequency ranges at all testing intensities were significantly
Neuron 58, 132–143, April 10, 2008 ª2008 Elsevier Inc. 137
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Figure 5. Spike TRFs of FS and RS Neurons

(A and B) Example spike TRF of an FS neuron (A) and a nearby RS neuron (B).

The enlarged recording trace indicates the spike waveform (right). Inset

shows tone-evoked spikes in single trials. Arrowhead indicates the onset of

tone stimulus.

(C) (Left) Distribution of bandwidths of spike TRFs at 60 dB SPL (BW60) plotted

against the cells’ CFs. (Right) Average spike BW60 of FS (open) and RS (filled)

cells with CFs below or above 6 kHz. Bars are SEM. *, two-sample t test,

p < 0.02.

(D) Average intensity threshold of spike TRFs of the same group of FS (open)

and RS (filled) neurons with CFs below or above 6 kHz. Bars are SEM.

*, two-sample t test, p < 0.02.

(E) Average onset latency of the first tone-evoked spike in FS and RS neurons.

Bars are SEM. *, two-sample t test, p < 0.001. The number of cells is indicated.
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broader in fast-spike neurons, and the intensity threshold of their

TRFs was significantly lower than that of regular-spike neurons

(Figure 5D). The broader bandwidth and lower intensity threshold

predict that the fast-spike neurons possess significantly larger

TRFs than nearby regular-spike neurons. In other words, at a

given intensity, fast-spike inhibitory neurons exhibit less-selective

frequency tuning than nearby excitatory neurons. Neurons in

layer 4 receive excitatory input primarily through thalamocortical

and local intracortical excitatory projections and receive inhib-

itory input mainly from local fast-spike neurons. The broader

spike TRFs of fast-spike neurons compared to those of nearby

excitatory neurons will account, at least partially, for the less-

selective frequency tuning of inhibitory input.

TRF of Membrane Potential Responses
in Fast-Spike Inhibitory Neurons
We next examined whether the broader TRFs of fast-spike inhib-

itory neurons are due to broader ranges of their excitatory inputs

or to their more efficient conversion of synaptic inputs to spike

outputs. Because of the sparse distribution of inhibitory neurons,

cell-attached recording followed by whole-cell current-clamp re-

cording was applied to select fast-spike neurons. Their TRFs of

membrane depolarization responses were examined (Figure 6A).

Here, tone-evoked membrane depolarizations were identified

according to the amplitude and onset latency of membrane

potential changes following the stimulus onset (see Experimental

Procedures). We then compared the spike TRF (determined with

initial cell-attached recording) and the TRF of membrane depo-

larizations (determined with subsequent current-clamp record-

ing) of the same cell. In the fast-spike inhibitory neuron, the spike

TRF largely overlapped with the TRF of membrane depolariza-

tion responses, with the same intensity threshold and slightly

narrower responding frequency ranges above the intensity

threshold (Figures 6A and 6C). In comparison, a regular-spike

neuron that had a similar CF exhibited a smaller spike TRF, leav-

ing larger subthreshold regions at the periphery of its membrane

potential TRF (Figures 6B and 6C). A total of six fast-spike neu-

rons and nine regular-spike neurons were recorded with both

spike and membrane potential TRFs obtained. The percentage

occupancy of spike response region in the membrane response

region was measured at 60 dB SPL (Figure 6D, left). The fast-spike

neurons possessed relatively larger spike response regions

(77.3% ± 8.5%, mean ± SD, n = 6) than regular-spike neurons

(54.3% ± 7.6%, n = 9; two-sample t test, p < 0.001). In the mean-

time, the frequency range of membrane depolarization responses

at 60 dB SPL was not significantly different between the two

groups of neurons (Figure 6D, right). Thus, our results demon-

strate that the frequency range of excitatory inputs is similar be-

tween fast-spike and regular-spike neurons. However, fast-spike

neurons can convert a broader range of synaptic inputs into spike

outputs. This may be partially due to stronger thalamocortical

synapses made on fast-spike inhibitory neurons than on pyrami-

dal cells, as suggested by several recent studies in cortical slices

(Cruikshank et al., 2007; Daw et al., 2007). Further technical devel-

opment will be needed to address the synaptic mechanisms un-

derlying the high sensitivity of fast-spike neurons (see Experimen-

tal Procedures). Nonetheless, the less-selective outputs from

fast-spike neurons may contribute to the more broadly tuned
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Figure 6. Suprathreshold and Subthreshold Regions of Synaptic TRFs in FS and RS Neurons

(A and B) (Left) Spike TRF of an FS (A) and an RS (B) neuron mapped with cell-attached recordings. Enlarged spike waveform is shown in the inset. (Right) TRF of

membrane potential responses mapped with subsequent whole-cell current-clamp recording. Insets show the reconstructed morphology of the recorded FS and

RS cells labeled with intracellular loading of biocytin.

(C) (Left) Frequency ranges of synaptic responses (red) and spike responses (blue) at different intensities for cells shown in (A) and (B).

(D) (Left) Percentage frequency range of spike responses relative to synaptic responses at 60 dB SPL in FS (n = 6) and RS neurons (n = 9). Two groups are

significantly different (p < 0.001, two-sample t test). (Right) Frequency range of synaptic responses at 60 dB SPL in FS and RS neurons. Bar, SEM.
inhibitory input to cortical excitatory neurons and result in the lat-

eral sharpening of frequency representation of these cells.

DISCUSSION

In this study, we examined the detailed patterns of excitatory and

inhibitory input to individual cortical excitatory neurons. We have

revealed that under approximately balanced excitation and inhi-

bition, inhibitory input exhibits significantly broader frequency

tuning than excitatory input. This results in relatively stronger

inhibition in frequency regions flanking the preferred frequencies

of the cell and an effective lateral sharpening of its frequency tun-

ing. By further examining the spike TRFs of fast-spike inhibitory

neurons, our results suggest that the observed lateral sharpen-
ing may be attributed to the broader spike TRFs of fast-spike

neurons compared to regular-spike neurons. In addition, intra-

cellular recordings indicate that the broader spike TRFs of

fast-spike neurons are not due to broader ranges of excitatory

inputs to these neurons, but to their higher efficiency of convert-

ing inputs to spike outputs.

Approximately Balanced Excitation and Inhibition
Previous in vivo whole-cell recording studies have led to the

conclusion that balanced excitation and inhibition underlie the

frequency-intensity tonal receptive field in the rat auditory

cortex. This is evidenced by the following: first, excitatory and in-

hibitory synaptic receptive fields are largely matched and exhibit

similar preferred frequencies (Zhang et al., 2003; Wehr and
Neuron 58, 132–143, April 10, 2008 ª2008 Elsevier Inc. 139
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Zador, 2003; Tan et al., 2004; Wu et al., 2006); second, excitatory

and inhibitory conductances activated by the same tone stimu-

lus have similar amplitudes and exhibit significant linear covaria-

tion under different tone stimuli (Wehr and Zador, 2003; Zhang

et al., 2003; Tan et al., 2004); third, inhibition closely follows

excitation, resulting in a scaling down of excitation (Ojima and

Murakami, 2002; Wehr and Zador, 2003; Tan et al., 2004; Wu

et al., 2006). However, the ‘‘balance’’ between excitation and

inhibition has not been quantified with sufficient measuring

resolutions in previous studies. In this study, our data are largely

consistent with the concept of balanced excitation and inhibition

in that excitatory and inhibitory inputs have similar TRF areas and

preferred frequencies. However, more detailed examination of

the tuning patterns of excitatory and inhibitory inputs reveals

that the balance is in fact only approximate. Inhibition has less-

selective frequency tuning than excitation, as reflected by the

broader 60% BW and 80% BW, which contribute significantly

to the spike frequency range of the cell. Our analysis further

suggests that under the approximate balance, the fine structures

in the excitatory and inhibitory tuning patterns can endow extra

processing power to cortical neurons.

Inhibitory Mechanisms for Shaping Frequency
Representation
Previous pharmacological experiments in sensory cortices have

shown that blocking cortical inhibition results in a reduction of

representational selectivity, e.g., orientation selectivity in the

visual cortex (Sillito, 1977, 1979; Crook et al., 1997) and fre-

quency selectivity in the auditory cortex (Chen and Jen, 2000;

Wang et al., 2000, 2002). Previous studies have demonstrated

that synaptic inhibition closely follows the excitation evoked by

the same tone stimulus and can interact with excitation to shape

the spike response. In our work, the onset of inhibitory input was

found to be 2.7 ± 0.5 ms (mean ± SD, n = 15 neurons; evoked by

CF tones at 70 dB) after that of excitatory input, while the onset

of the first tone-evoked spike was 4.5 ± 0.8 ms (n = 8 neurons;

obtained in current-clamp recordings) after that of excitatory

input (also see Figure 5E). The significant later onset of the first

spike compared to that of inhibitory input (independent t test,

p < 0.001) indicates that inhibitory input can affect spike

responses. This is consistent with previous findings in the thal-

amocortical circuit of various sensory cortices that show that

the temporally delayed inhibitory input can control the threshold

for the generation of spike responses (e.g., Douglas and Martin

1991; Somers et al., 1995; Anderson et al., 2000; Zhang et al.,

2003; Wehr and Zador, 2003; Tan et al., 2004; Higley and Contre-

ras, 2006). Because inhibition is roughly balanced with excitation

in the rat auditory cortex, it is proposed that the inhibitory sharp-

ening of frequency tuning can be simply achieved through

generally scaling down the level of excitation (Wehr and Zador,

2003; Tan, et al., 2004). In this study, our data have revealed

an additional mechanism for inhibitory sharpening, i.e., an equiv-

alent lateral inhibitory effect. Since inhibitory tuning curve

exhibits a broader peak than excitation, it generates relatively

stronger inhibition in frequency regions at the flanks of the exci-

tation peak and thus narrows the tuning curve of membrane

potential responses round the peak. Taken together, our results

have united the two models of balanced excitation-inhibition and
140 Neuron 58, 132–143, April 10, 2008 ª2008 Elsevier Inc.
lateral inhibition and demonstrate that fine structures in the pat-

tern of synaptic inputs can play significant roles in determining

cortical representation and processing functions.

Properties of Auditory Cortical Inhibitory Neurons
In many cortical areas, only 15%–25% of total neurons are

GABAergic inhibitory neurons (Peters and Kara, 1985; Hendry

et al., 1987; Priet et al., 1994). Because of their sparseness and

the difficulty in identifying them in vivo, our knowledge of func-

tional properties of cortical inhibitory neurons is scarce; neither

do we know much about the structure of inhibitory circuits. Extra-

cellular recordings from suspected inhibitory neurons in the input

layer of rabbit somatosensory cortex suggest that they respond

unselectively to the direction of whisker displacement, while

principal cells are known to exhibit direction selectivity (Swadlow,

2003). In layer 4 of cat primary visual cortex, two functional

populations of inhibitory cells (simple and complex, similar to

pyramidal neurons) were identified by intracellular recording and

biocytin labeling (Hirsch et al., 2003), while a recent calcium imag-

ing study in mice suggests that, in layer 2/3, GABAergic neurons

exhibit much weaker orientation selectivity compared to non-

GABAergic neurons (Sohya et al., 2007). There are different

subtypes of inhibitory neurons according to their distinct physio-

logical, morphological, and neurochemical properties (Kawagu-

chi and Kubota, 1997; Gonchar and Burkhalter, 1997; Gupta

et al., 2000). In this study, by combining cell-attached spike

recording with juxtacellular labeling or with subsequent whole-

cell recording and labeling, we specifically targeted fast-spike

inhibitory neurons in the rat A1. Fast-spike inhibitory neurons

are parvalbumin positive and occupy about 70% of the inhibitory

neuron population in layer 4. The major type of fast-spike neurons

is basket cells. The minor type is chandelier cells, which normally

are not driven by sensory inputs under physiological conditions

(Zhu et al., 2004). Thus, tone-evoked inhibitory inputs to layer 4

neurons are likely provided primarily by nearby fast-spike basket

cells. Our results indicate that fast-spike inhibitory neurons have

broader spike TRFs and exhibit lower selectivity but higher

sensitivity in response to tonal stimuli, consistent with the conven-

tionally assumed role of cortical inhibitory neurons.

Implication on Cortical Circuitry
The onsets of tone-evoked spike responses in fast-spike

inhibitory neurons are slightly earlier (13.05 ± 0.37 ms, mean ±

SEM, n = 18) than those of regular-spike neurons (14.82 ±

0.26 ms, n = 22; Figure 5E). Because fast-spike inhibitory neu-

rons are the major source of cortical inhibition in layer 4 (Agmon

and Connors, 1992; Gil and Amitai, 1996; Gibson et al.,1999;

Inoue and Imoto, 2006; Sun et al., 2006), this suggests that inhib-

itory inputs to layer 4 neurons could be primarily feedforward

(Tan et al., 2004). In addition, our data indicate that neighboring

fast-spike and excitatory neurons have similar preferred fre-

quencies and frequency ranges of excitatory inputs (as indicated

by the tone-evoked membrane depolarizations). Thus, a simpli-

fied circuitry model can be proposed here: the neighboring excit-

atory neurons and fast-spike inhibitory neurons are innervated

by a similar set of thalamocortical axons, and the excitatory

neurons also receive feedforward inhibition from the fast-spike

neurons. The slightly narrower frequency range of inhibitory input
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compared to that of excitatory input in pyramidal neurons

(Figure 3A) can be attributed to the fact that the frequency range

of spike output of fast-spike neurons is slightly narrower than

that of their excitatory input (Figures 6C and 6D). Because the

amplitudes of inhibitory inputs are graded at any given testing in-

tensity, the recorded pyramidal neuron likely receives inhibitory

inputs from a group of cortical inhibitory neurons. Further under-

standing of the distribution pattern of inhibitory neurons that

project to a single pyramidal neuron will be needed for a more

realistic model of cortical inhibitory circuitry.

EXPERIMENTAL PROCEDURES

Animal Preparation and Extracellular Recording

All experimental procedures used in this study were approved under the

Animal Care and Use Committee at the University of Southern California.

Experiments were carried out in a soundproof booth (Acoustic Systems) as

described previously (Zhang et al., 2001; Tan et al., 2004; Wu et al., 2006).

Female Sprague-Dawley rats (about 3 months old and weighing 250–300 g)

were anesthetized with ketamine and xylazine (ketamine, 45 mg/kg; xylazine,

6.4 mg/kg; i.p.). The right auditory cortex was exposed, and the right ear canal

was plugged. Multiunit spikes were recorded with parylene-coated tungsten

microelectrodes (2 MU, FHC) at 500–600 mm below the pial surface. Electrode

signals were amplified (Plexon Inc.), band-pass filtered between 300 and

6000 Hz, and then thresholded by custom-made LabView software (National

Instrument) to extract the spike times. Pure tones (0.5–64 kHz at 0.1 octave

intervals, 25 ms duration, 3 ms ramp) at eight 10 dB spaced sound intensities

were delivered through a calibrated free-field speaker facing the left ear. The

number of tone-evoked spikes was counted within a window of 10–30 ms

from the onset of tone stimulus. The characteristic frequency (CF) of a record-

ing site was defined as the tone frequency at the intensity threshold for spike

responses. Auditory cortical mapping was carried out by sequentially record-

ing from an array of cortical sites to identify the location and frequency repre-

sentation of A1 as previously described. During mapping, the cortical surface

was slowly perfused with prewarmed artificial cerebrospinal fluid (ACSF;

in mM: NaCl 124, NaH2PO4 1.2, KCl 2.5, NaHCO3 25, glucose 20, CaCl2
2, MgCl2 1) to prevent it from drying.

In Vivo Whole-Cell Recording

After premapping of A1, whole-cell recordings (Moore and Nelson, 1998;

Margrie et al., 2002; Zhang et al., 2003; Wehr and Zador, 2003; Tan et al.,

2004; Wu et al., 2006) were obtained from neurons located at 500–650 mm

beneath the cortical surface, corresponding to the input layers of the auditory

cortex (Games and Winer, 1988). We prevented cortical pulsation with 4%

agarose. For voltage-clamp recording, the patch pipette (4–7 MU) contained

(in mM) 125 Cs-gluconate, 5 TEA-Cl, 4 MgATP, 0.3 GTP, 10 phosphocreatine,

10 HEPES, 1 EGTA, 2 CsCl, 2 QX-314, pH 7.2, and 0.5% biocytin. Recordings

were made with an Axopatch 200B amplifier (Axon Instruments). The whole-

cell and pipette capacitance were completely compensated, and the initial

series resistance (20–50 MU) was compensated for 50%–60% to achieve an

effective series resistance of 10–25 MU. Signals were filtered at 5 kHz and

sampled at 10 kHz. Only neurons with resting membrane potentials lower

than �55 mV and stable series resistance were used for further analysis.

To obtain tone-evoked synaptic conductances, the cells were clamped at

�70 mV and 0 mV, respectively, which are around the reversal potentials of

inhibitory and excitatory currents, as also described in our previous studies

(Zhang et al., 2003; Tan et al., 2004; Wu et al., 2006). The linearity of I-V curve

(Figure S1) suggests that cortical cells can be reasonably clamped, which is

further supported by the fact that when cells were clamped at 0 mV, no signif-

icant excitatory currents were observed (Figure 2A), except the outward Cl�

currents. This may be attributed to the use of intracellular cesium, TEA,

QX-314, and ketamine anesthesia, which together block most voltage-depen-

dent currents (through K+ and Na+ channels and NMDA receptors).

Histological staining of the recorded cells after recording (Horikawa and

Armstrong, 1988; Hirsch et al., 2003; Zhu et al., 2004) indicates that the
whole-cell voltage-clamp recording method under our current condition

sampled pyramidal neurons with a bias. All 25 successfully reconstructed

morphologies after whole-cell voltage-clamp recordings showed typical pyra-

midal cells, consistent with previous work (Moore and Nelson, 1998; Margrie

et al., 2002; Wu et al., 2006).

Cell-Attached Recording followed by Current-Clamp Recording

or Juxtacellular Labeling

For cell-attached recording, pipettes with smaller tip openings (imped-

ance:10–14 MU) were used to overcome the recording bias toward cells

with larger cell bodies. Pipettes were filled with ACSF solution containing

0.5% biocytin or intracellular solution containing 0.5% biocytin when sub-

sequent whole-cell current-clamp recordings were to follow. Loose seal

(0.2–1 giga Ohm) was made from neurons, allowing spikes only from the

patched cell to be recorded. Recording was under voltage-clamp mode with-

out applying a holding voltage. Spike responses are reflected by the current

spikes (Figure 4A). Signals were filtered at 0.1–10 kHz. Spike shapes were de-

termined on-line by custom-developed LabView software. The chance of en-

countering a fast-spike neuron is around 10% in our recording experience. The

online spike sorting enabled us to specifically search for fast-spike neurons.

Once the spike TRF was mapped (normally three repetitions), we applied

current pulses of 0.25–1 nA for 200 ms ON and 200 ms OFF for up to 20 min

(Joshi and Hawken, 2006; Turner et al., 2005; Otmakhova et al., 2002). During

and after the protocol, tone-evoked spike responses were monitored to make

sure that there was no damage to the cell or drifting of the recording pipette.

After the recording, animals were perfused with 4% paraformaldehyde for

histological procedures. Normally, juxtacellular labeling only revealed the

somatic and dendritic morphologies. Six FS and ten RS cells were success-

fully reconstructed, and their morphologies are all consistent with that of FS

inhibitory neurons and excitatory pyramidal neurons, respectively.

To determine the subthreshold TRFs of fast-spike neurons, the same small-

tipped pipettes were used, containing (in mM) 125 K-gluconate, 4 MgATP,

0.3 GTP, 10 phosphocreatine, 10 HEPES, 1 EGTA, 2 QX-314, pH 7.2, and

0.5% biocytin. After identifying the fast-spike cell type and obtaining the com-

plete spike TRF, the cell-attached recording was followed by breaking in the

cell membrane. Normal histological procedures were carried out following

the current-clamp recording. It should be noted that it remains extremely dif-

ficult to achieve high-quality whole-cell recordings under this searching strat-

egy to dissect excitatory and inhibitory synaptic inputs to fast-spike neurons.

Nonetheless, the current technique allows us to define the subthreshold and

spike response ranges.

Data Analysis

Synaptic Conductances

Excitatory and inhibitory synaptic conductance were derived according to

I (t, V) = Gr(V � Er) + Ge(t)(V � Ee) + Gi(t)(V � Ei). (Borg-Graham et al., 1998; An-

derson et al., 2000; Zhang et al., 2003; Wehr and Zador, 2003; Wu et al., 2006).

I is the amplitude of synaptic current at any time point; Gr and Er are the resting

conductance and resting membrane potential and were derived from the

baseline currents of each recording; Ge and Gi are the excitatory and inhibitory

synaptic conductance; V is the holding voltage, and Ee (0 mV) and Ei (�70 mV)

are the reversal potentials. In this study, a corrected clamping voltage was

used instead of the holding voltage applied (Vh). V(t) is corrected by V(t) =

Vh – Rs 3 I(t), where Rs was the effective series resistance. A 12 mV junction

potential was corrected. By holding the recorded cell at two different voltages,

Ge and Gi were calculated from the equation. Ge and Gi reflect the strength of

pure excitatory and inhibitory synaptic inputs, respectively. Under holding po-

tentials of –70 mV, activation of NMDA receptors can be ignored (Hestrin et al.,

1990; Jahr and Stevens, 1990a, 1990b; Pinault, 1996). Thus, the tone-evoked

synaptic currents are primarily mediated by AMPA and GABAA receptors.

Membrane Potential Responses

Membrane potential was calculated according to Vest (t) = (GrEr + Ge(t)Ee +

Gi(t)Ei)/(Gr + Ge(t) + Gi(t)). Vest is the estimated membrane potential change.

To estimate the spiking responses of the pyramidal cell from synaptic conduc-

tances, the spike threshold is set at 20 mV above the resting membrane poten-

tial, according to results from our current-clamp recordings (19.86 ± 4.12 mV,

mean ± SD, n = 4). No significant difference in spike threshold was observed
Neuron 58, 132–143, April 10, 2008 ª2008 Elsevier Inc. 141
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for inhibitory neurons (17.51 and 19.11 mV, n = 2). We noted that by using a

different equation with consideration of the cell capacitance (Wehr and Zador,

2003), no qualitative difference in the membrane potential tuning curves was

observed. The reversal potential for inhibitory conductance is determined by

the ratio of Cl� concentration in the intrapipette solution and in the cerebrospi-

nal fluid. In our condition, the estimated Cl� reversal potential is �70 mV after

correction of pipette junction potential. In our analyses, we also derived synap-

tic conductances based on three different presumptive reversal potentials

(�60, �70, and �80 mV) and verified that our conclusion was not sensitive

to the variation in Cl� reversal potential.

Frequency Tuning Curves

The Amplitude Envelopes for Excitatory and Inhibitory Inputs. After deriving

excitatory and inhibitory conductances at a desired testing intensity, the

peak amplitudes of both conductances at each testing frequency were deter-

mined. The envelope for peak amplitudes along frequency domain was

derived by using a cubic spline interpolation algorithm in the custom-made

software in MATLAB.

Normalization of Tuning Curves in Figures 3B and 3E. First, all conductance

values in each tuning curve were normalized to the maximum response value.

Next, the excitatory tuning curves or the membrane potential tuning curves

based on excitation alone were extended or compressed along the frequency

axis by a scaling factor to obtain the same half-peak bandwidth (i.e., band-

width from f�50 to f50). These normalized tuning curves were then aligned

according to the half-peak bandwidth before averaging. The corresponding

inhibitory tuning curve or membrane potential tuning curve based on both

excitation and inhibition was normalized by the same scaling factor and was

shifted by the same frequency distance.

Tone-Evoked Responses

Spike Responses. With cell-attached recording, spikes can be detected

without ambiguity because their amplitudes are normally higher than 100 pA,

while the baseline fluctuation is within 10 pA. Tone-driven spikes were

identified within a 15 ms time window from a peristimulus-spike-time histogram

(PSTH) generated from all the response traces. In anesthetized A1, spontane-

ous firing in a single cell is lower than 10 Hz, suggesting that the error in defining

tone-evoked spikes caused by spontaneous activity is minor. The characteris-

tic frequency (CF) for the spike TRF (either from loose-patch or multiunit extra-

cellular recording) was defined as the logarithmic center of the responding fre-

quency range at the intensity threshold (e.g., Zhang, et al., 2001; 2002).

Synaptic Current and Membrane Potential Responses. These responses

were identified according to their onset latencies and peak amplitudes. All

the response traces evoked by the same test stimulus were averaged, and

the onset latency of this average trace was identified at the time point in the

rising phase of response wave form, which was 3-fold of the standard devia-

tion of baseline. Only responses with onset latencies within 7–30 ms from

the onset of tone stimulus were considered in this study.

Estimation of CF in Cortical Sites from Premapping

Similar as previously described (Zhang, et al., 2003; Tan et al., 2004), 15 to 20

extracellular recordings were made in each animal to roughly define the tono-

topicity of the A1. The CFs of recorded sites were plotted according to the

relative cortical coordinates of those sites along the tonotopic axis, and a fitted

line was derived to determine a frequency representation gradient (see Zhang

et al., 2002). CFs of unrecorded cortical sites in the same A1 were then

estimated according to their coordinates in the tonotopic map.

SUPPLEMENTAL DATA

The Supplemental Data for this article can be found online at http://www.

neuron.org/cgi/content/full/58/1/132/DC1/.
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