26 research outputs found

    Relationship between molecular pathogen detection and clinical disease in febrile children across Europe: a multicentre, prospective observational study

    Get PDF
    BackgroundThe PERFORM study aimed to understand causes of febrile childhood illness by comparing molecular pathogen detection with current clinical practice.MethodsFebrile children and controls were recruited on presentation to hospital in 9 European countries 2016-2020. Each child was assigned a standardized diagnostic category based on retrospective review of local clinical and microbiological data. Subsequently, centralised molecular tests (CMTs) for 19 respiratory and 27 blood pathogens were performed.FindingsOf 4611 febrile children, 643 (14%) were classified as definite bacterial infection (DB), 491 (11%) as definite viral infection (DV), and 3477 (75%) had uncertain aetiology. 1061 controls without infection were recruited. CMTs detected blood bacteria more frequently in DB than DV cases for N. meningitidis (OR: 3.37, 95% CI: 1.92-5.99), S. pneumoniae (OR: 3.89, 95% CI: 2.07-7.59), Group A streptococcus (OR 2.73, 95% CI 1.13-6.09) and E. coli (OR 2.7, 95% CI 1.02-6.71). Respiratory viruses were more common in febrile children than controls, but only influenza A (OR 0.24, 95% CI 0.11-0.46), influenza B (OR 0.12, 95% CI 0.02-0.37) and RSV (OR 0.16, 95% CI: 0.06-0.36) were less common in DB than DV cases. Of 16 blood viruses, enterovirus (OR 0.43, 95% CI 0.23-0.72) and EBV (OR 0.71, 95% CI 0.56-0.90) were detected less often in DB than DV cases. Combined local diagnostics and CMTs respectively detected blood viruses and respiratory viruses in 360 (56%) and 161 (25%) of DB cases, and virus detection ruled-out bacterial infection poorly, with predictive values of 0.64 and 0.68 respectively.InterpretationMost febrile children cannot be conclusively defined as having bacterial or viral infection when molecular tests supplement conventional approaches. Viruses are detected in most patients with bacterial infections, and the clinical value of individual pathogen detection in determining treatment is low. New approaches are needed to help determine which febrile children require antibiotics.FundingEU Horizon 2020 grant 668303

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    Evaluation of the SOS chromotest

    No full text

    Struktur-Wirkungs-Beziehungen anhand von Epoxiden in Saeugerzell-Genotoxitaets-Tests

    No full text
    Studies with mammalian V79-cells showed that for some sub-groups of epoxides a close quantitative relationship exists between the genotoxic potency and the chemical structure. This relationship is well described by the alkylation rate of NBP by these substances. But it is also shown that alkylation of NBP by epoxides is not a good parameter for a more general prediction of genotoxicity in mammalian cells. The predictibility of genotoxicity is enhanced when also the water/octanol partition coefficient is considered. On the other hand, a quantitative prediction for chiral epoxides is not possible because enantiomers do not differ in these parameters, whereas they differ in their biological effects. Furthermore, these effects were different between bacteria and mammalian cells. Further studies have to show which biological mechanisms are responsible for these different effects of enantiomers. (orig.)SIGLEAvailable from TIB Hannover: RN 8908(92-047) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekBundesministerium fuer Umwelt, Naturschutz und Reaktorsicherheit, Bonn (Germany)DEGerman

    In vitro micronucleus assay with Chinese hamster V79 cells - results of a collaborative study with in situ exposure to 26 chemical substances

    No full text
    A collaborative study with 10 participating laboratories was conducted to evaluate a test protocol for the performance of the in vitro micronucleus (MN) test using the V79 cell line with one treatment and one sampling time only. A total of 26 coded substances were tested in this study for MN-inducing properties. Three substances were tested by all 10 laboratories and 23 substances were tested by three or four laboratories in parallel. Six aneugenic, 7 clastogenic and 6 non-genotoxic chemicals were uniformly recognised as such by all laboratories. Three chemicals were tested uniformly negative by three laboratories although also clastogenic properties have been reported for these substances. Another set of three clastogenic substances showed inconsistent results and one non-clastogenic substance was found to be positive by one out of three laboratories. Within the study, the applicability of the determination of a proliferation index (PI) as an internal cytotoxicity parameter in comparison with the determination of the mitotic index (MI) was also evaluated. Both parameters were found to be useful for the interpretation of the MN test result with regard to the control of cell cycle kinetics and the mode of action for MN induction. The MN test in vitro was found to be easy to perform and its results were mainly in accordance with results from chromosomal aberration tests in vitro
    corecore