2,355 research outputs found

    Dp-branes, NS5-branes and U-duality from nonabelian (2,0) theory with Lie 3-algebra

    Full text link
    We derive the super Yang-Mills action of Dp-branes on a torus T^{p-4} from the nonabelian (2,0) theory with Lie 3-algebra. Our realization is based on Lie 3-algebra with pairs of Lorentzian metric generators. The resultant theory then has negative norm modes, but it results in a unitary theory by setting VEV's of these modes. This procedure corresponds to the torus compactification, therefore by taking a transformation which is equivalent to T-duality, the Dp-brane action is obtained. We also study type IIA/IIB NS5-brane and Kaluza-Klein monopole systems by taking other VEV assignments. Such various compactifications can be realized in the nonabelian (2,0) theory, since both longitudinal and transverse directions can be compactified, which is different from the BLG theory. We finally discuss U-duality among these branes, and show that most of the moduli parameters in U-duality group are recovered. Especially in D5-brane case, the whole U-duality relation is properly reproduced.Comment: 1+26 page

    High-growth-rate magnetohydrodynamic instability in differentially rotating compressible flow

    Full text link
    The transport of angular momentum in the outward direction is the fundamental requirement for accretion to proceed in an accretion disc. This objective can be achieved if the accretion flow is turbulent. Instabilities are one of the sources for the turbulence. We study a differentially rotating compressive flow in the presence of non vanishing radial and azimuthal magnetic field and demonstrate the occurrence of a high growth rate instability. This instability operates in a region where magnetic energy density exceeds the rotational energy density

    Nuclear Shell Model by the Quantum Monte Carlo Diagonalization Method

    Full text link
    The feasibility of shell-model calculations is radically extended by the Quantum Monte Carlo Diagonalization method with various essential improvements. The major improvements are made in the sampling for the generation of shell-model basis vectors, and in the restoration of symmetries such as angular momentum and isospin. Consequently the level structure of low-lying states can be studied with realistic interactions. After testing this method on 24^{24}Mg, we present first results for energy levels and E2E2 properties of 64^{64}Ge, indicating its large and γ\gamma-soft deformation.Comment: 12 pages, RevTex, 2 figures, to be published in Physical Review Letter

    A Trigonometric Parallax of Sgr B2

    Full text link
    We have measured the positions of water masers in Sgr B2, a massive star forming region in the Galactic center, relative to an extragalactic radio source with the Very Long Baseline Array. The positions measured at 12 epochs over a time span of one year yield the trigonometric parallax of Sgr B2 and hence a distance to the Galactic center of Ro=7.9 (+0.8/-0.7) kpc. The proper motion of Sgr B2 relative to Sgr A* suggests that Sgr B2 is about 0.13 kpc nearer than the Galactic center, assuming a low-eccentricity Galactic orbit.Comment: Submitted to ApJ; 4 tables; 3 figures. Version 2 corrects Fig. 2 which was missing some dat

    Limits on the Position Wander of Sgr A*

    Full text link
    We present measurements with the VLBA of the variability in the centroid position of Sgr A* relative to a background quasar at 7-mm wavelength. We find an average centroid wander of 71 +/- 45 micro-arcsec for time scales between 50 and 100 min and 113 +/- 50 micro-arcsec for timescales between 100 and 200 min, with no secular trend. These are sufficient to begin constraining the viability of the hot-spot model for the radio variability of Sgr A*. It is possible to rule out hot spots with orbital radii above 15GM_SgrA*/c^2 that contribute more than 30% of the total 7-mm flux. However, closer or less luminous hot spots remain unconstrained. Since the fractional variability of Sgr A* during our observations was ~20% on time scales of hours, the hot-spot model for Sgr A*'s radio variability remains consistent with these limits. Improved monitoring of Sgr A*'s centroid position has the potential to place significant constraints upon the existence and morphology of inhomogeneities in a supermassive black hole accretion flow.Comment: 14 pages, 3 figures submitted to Ap

    Rotation Curves of Galaxies by Fourth Order Gravity

    Full text link
    We investigate the radial behavior of galactic rotation curves by a Fourth Order Gravity adding also the Dark Matter component. The Fourth Order Gravity is a Lagrangian containing the Ricci scalar, the Ricci and Riemann tensor, but the rotation curves are depending only on two free parameters. A systematic analysis of rotation curves, in the Newtonian Limit of theory, induced by all galactic sub-structures of ordinary matter is shown. This analysis is presented for Fourth Order Gravity with and without Dark Matter. The outcomes are compared with respect to classical outcomes of General Relativity. The gravitational potential of point-like mass is the usual potential corrected by two Yukawa terms. The rotation curve is higher or also lower than curve of General Relativity if in the Lagrangian the Ricci scalar square is dominant or not with respect to the contribution of the Ricci tensor square. The curves are compared with the experimental data for the Milky Way and the galaxy NGC 3198. Although the Fourth Order Gravity gives more rotational contributions, in the limit of large distances the Keplerian behavior is present, and it is missing if we add a Dark Matter component. By modifying the theory of Gravitation consequently also the spatial description of Dark Matter could undergo a modification. At last we compare the gravitational potential by Fourth Order Gravity with respect to more used potential induced by power law of Ricci scalar.Comment: 14 pages, 10 figure

    Description of superdeformed nuclei in the interacting boson model

    Full text link
    The interacting boson model is extended to describe the spectroscopy of superdeformed bands. Microscopic structure of the model in the second minimum is discussed and superdeformed bosons are introduced as the new building blocks. Solutions of a quadrupole Hamiltonian are implemented through the 1/N1/N expansion method. Effects of the quadrupole parameters on dynamic moment of inertia and electric quadrupole transition rates are discussed and the results are used in a description of superdeformed bands in the Hg-Pb and Gd-Dy regions.Comment: 18 pages revtex, 9 figures available upon reques

    A New Approach to Large-Scale Nuclear Structure Calculations

    Get PDF
    A new approach to large-scale nuclear structure calculations, based on the Density Matrix Renormalization Group (DMRG), is described. The method is tested in the context of a problem involving many identical nucleons constrained to move in a single large-j shell and interacting via a pairing plus quadrupole interaction. In cases in which exact diagonalization of the hamiltonian is possible, the method is able to reproduce the exact results for the ground state energy and the energies of low-lying excited states with extreme precision. Results are also presented for a model problem in which exact solution is not feasible.Comment: 6 pages + 1 eps figur

    Improved VLBI astrometry of OH maser stars

    Full text link
    Aims: Accurate distances to evolved stars with high mass loss rates are needed for studies of many of their fundamental properties. However, as these stars are heavily obscured and variable, optical and infrared astrometry is unable to provide enough accuracy. Methods: Astrometry using masers in the circumstellar envelopes can be used to overcome this problem. We have observed the OH masers of a number of Asymptotic Giant Branch (AGB) stars for approximately 1 year with the Very Long Baseline Array (VLBA). We have used the technique of phase referencing with in-beam calibrators to test the improvements this technique can provide to Very Long Baseline Interferometry (VLBI) OH maser astrometric observations. Results: We have significantly improved the parallax and proper motion measurements of the Mira variable stars U Her, S CrB and RR Aql. Conclusions: It is shown that both in-beam phase-referencing and a decrease in solar activity during the observations significantly improves the accuracy of the astrometric observations. The improved distances to S CrB (418 +21 -18 pc) and RR Aql (633 +214 -128 pc) are fully consistent with published P-L relations, but the distance to U Her (266 +32 -28 pc) is significantly smaller. We conclude that for sources that are bright and have a nearby in-beam calibrator, VLBI OH maser astrometry can be used to determine distances to OH masing stars of up to ~2 kpc.Comment: 15 pages, 10 figures; accepted for publication in A&A; for a version with high-resolution figures see http://www.astro.uni-bonn.de/~wouter/papers/astrom/astrom.shtm

    Intrinsic electronic superconducting phases at 60 K and 90 K in double-layer YBa2_2Cu3_3O6+δ_{6+\delta}

    Full text link
    We study superconducting transition temperature (TcT_c) of oxygen-doped double-layer high-temperature superconductors YBa2_2Cu3_3O6+δ_{6+\delta} (0 ≤\le δ\delta ≤\le 1) as a function of the oxygen dopant concentration (δ\delta) and planar hole-doping concentration (PplP_{pl}). We find that TcT_c, while clearly influenced by the development of the chain ordering as seen in the TcT_c vs.vs. δ\delta plot, lies on a universal curve originating at the critical hole concentration (PcP_c) = 1/16 in the TcT_c vs.vs. PplP_{pl} plot. Our analysis suggests that the universal behavior of TcT_c(PplP_{pl}) can be understood in terms of the competition and collaboration of chemical-phases and electronic-phases that exist in the system. We conclude that the global superconductivity behavior of YBa2_2Cu3_3O6+δ_{6+\delta} as a function of doping is electronically driven and dictated by pristine electronic phases at magic doping numbers that follow the hierarchical order based on PcP_c, such as 2 ×\times PcP_c, 3 ×\times PcP_c and 4 ×\times PcP_c. We find that there are at least two intrinsic electronic superconducting phases of TcT_c = 60 K at 2 ×\times PcP_c = 1/8 and TcT_c = 90 K at 3 ×\times PcP_c = 3/16.Comment: 4 pages, 2 figure
    • …
    corecore