2,223 research outputs found

    Orphanhood and caregiver loss among children based on new global excess COVID-19 death estimates

    Get PDF
    The availability of new excess mortality data enables us to update global minimum estimates of COVID-19 orphanhood and caregiver death among children.1-4 Consequences for children can be devastating, including institutionalization, abuse, traumatic grief, mental health problems, adolescent pregnancy, poor educational outcomes, and chronic and infectious diseases.4,5 Global totals and country comparisons were previously hampered by inconsistencies in COVID-19 testing and incomplete death reporting. The new orphanhood estimates derived here based on excess deaths provide a comprehensive measure of COVID-19’s long-term impact on orphanhood and caregiver loss

    A Comparison of Two Methods for MRI Classification of At-Risk Tissue and Core Infarction

    Get PDF
    Objective: To compare how at-risk tissue and core infarction were defined in two major trials that tested the use of MRI in selecting acute stroke patients for endovascular recanalization therapy.Methods: MRIs from 12 patients evaluated for possible endovascular therapy were processed using the methods published from two major trials, MR RESCUE and DEFUSE 2. Specifically, volumes of at-risk tissue and core infarction were generated from each patient’s MRI. MRIs were then classified as to whether or not they met criteria for salvageable tissue: penumbral pattern for MR RESCUE and/or target profile for DEFUSE 2) as defined by each trial.Results: Volumes of at-risk tissue by the two definitions were correlated (p=0.017) while the volumes of core infarct were not (p=0.059). The volume of at-risk tissue was consistently larger when defined by the penumbral pattern than the target profile while the volume of core infarct was consistently larger when defined by the target profile than the penumbral pattern. When these volumes were used to classify the MRI scans, nine out of 12 patients (75%) were classified as having a penumbral pattern, while only 4 out of 12 patients (33%) were classified as having a target profile. Of the 9 patients classified as penumbral pattern, 5 (55%) were classified differently by the target profile.Interpretation: Our analysis found that the MR RESCUE trial defined salvageable tissue in a way which made it more likely for patients be labeled as favorable for treatment. For the cohort of patients examined in this study, had they been enrolled in both trials, most of the patients identified as having salvageable tissue by the MR RESCUE trial would not have been considered to have salvageable tissue in the DEFUSE 2 trial. Caution should be taken in concluding that MRI selection for endovascular therapy is not effective as imaging selection criteria were substantially different between trials

    Adaptive walks on time-dependent fitness landscapes

    Full text link
    The idea of adaptive walks on fitness landscapes as a means of studying evolutionary processes on large time scales is extended to fitness landscapes that are slowly changing over time. The influence of ruggedness and of the amount of static fitness contributions are investigated for model landscapes derived from Kauffman's NKNK landscapes. Depending on the amount of static fitness contributions in the landscape, the evolutionary dynamics can be divided into a percolating and a non-percolating phase. In the percolating phase, the walker performs a random walk over the regions of the landscape with high fitness.Comment: 7 pages, 6 eps-figures, RevTeX, submitted to Phys. Rev.

    From quantum cellular automata to quantum lattice gases

    Get PDF
    A natural architecture for nanoscale quantum computation is that of a quantum cellular automaton. Motivated by this observation, in this paper we begin an investigation of exactly unitary cellular automata. After proving that there can be no nontrivial, homogeneous, local, unitary, scalar cellular automaton in one dimension, we weaken the homogeneity condition and show that there are nontrivial, exactly unitary, partitioning cellular automata. We find a one parameter family of evolution rules which are best interpreted as those for a one particle quantum automaton. This model is naturally reformulated as a two component cellular automaton which we demonstrate to limit to the Dirac equation. We describe two generalizations of this automaton, the second of which, to multiple interacting particles, is the correct definition of a quantum lattice gas.Comment: 22 pages, plain TeX, 9 PostScript figures included with epsf.tex (ignore the under/overfull \vbox error messages); minor typographical corrections and journal reference adde

    Data incongruence and the problem of avian louse phylogeny

    Get PDF
    Recent studies based on different types of data (i.e. morphological and molecular) have supported conflicting phylogenies for the genera of avian feather lice (Ischnocera: Phthiraptera). We analyse new and published data from morphology and from mitochondrial (12S rRNA and COI) and nuclear (EF1-) genes to explore the sources of this incongruence and explain these conflicts. Character convergence, multiple substitutions at high divergences, and ancient radiation over a short period of time have contributed to the problem of resolving louse phylogeny with the data currently available. We show that apparent incongruence between the molecular datasets is largely attributable to rate variation and nonstationarity of base composition. In contrast, highly significant character incongruence leads to topological incongruence between the molecular and morphological data. We consider ways in which biases in the sequence data could be misleading, using several maximum likelihood models and LogDet corrections. The hierarchical structure of the data is explored using likelihood mapping and SplitsTree methods. Ultimately, we concede there is strong discordance between the molecular and morphological data and apply the conditional combination approach in this case. We conclude that higher level phylogenetic relationships within avian Ischnocera remain extremely problematic. However, consensus between datasets is beginning to converge on a stable phylogeny for avian lice, at and below the familial rank

    Quantum mechanics of lattice gas automata. I. One particle plane waves and potentials

    Full text link
    Classical lattice gas automata effectively simulate physical processes such as diffusion and fluid flow (in certain parameter regimes) despite their simplicity at the microscale. Motivated by current interest in quantum computation we recently defined quantum lattice gas automata; in this paper we initiate a project to analyze which physical processes these models can effectively simulate. Studying the single particle sector of a one dimensional quantum lattice gas we find discrete analogues of plane waves and wave packets, and then investigate their behaviour in the presence of inhomogeneous potentials.Comment: 19 pages, plain TeX, 14 PostScript figures included with epsf.tex (ignore the under/overfull \vbox error messages), two additional large figures available upon reques
    corecore