1,777 research outputs found

    Universality of rain event size distributions

    Full text link
    We compare rain event size distributions derived from measurements in climatically different regions, which we find to be well approximated by power laws of similar exponents over broad ranges. Differences can be seen in the large-scale cutoffs of the distributions. Event duration distributions suggest that the scale-free aspects are related to the absence of characteristic scales in the meteorological mesoscale.Comment: 16 pages, 10 figure

    Strong anisotropy of superexchange in the copper-oxygen chains of La_{14-x}Ca_{x}Cu_{24}O_{41}

    Full text link
    Electron spin resonance data of Cu^{2+} ions in La_{14-x}Ca_{x}Cu_{24}O_{41} crystals (x=9,11,12) reveal a very large width of the resonance line in the paramagnetic state. This signals an unusually strong anisotropy of ~10% of the isotropic Heisenberg superexchange in the Cu-O chains of this compound. The strong anisotropy can be explained by the specific geometry of two symmetrical 90 degree Cu-O-Cu bonds, which boosts the importance of orbital degrees of freedom. Our data show the apparent limitations of the applicability of an isotropic Heisenberg model to the low dimensional cuprates.Comment: 14 pages, 3 figures included, to be published in Phys. Rev. Let

    Deterministic and Stochastic Spin Diffusion in Classical Heisenberg Magnets

    Get PDF
    This computer simulation study provides further evidence that spin diffusion in the one‐dimensional classical Heisenberg model at T=∞ is anomalous: 〈S j ( t )⋅S j 〉 ∌t −α 1 withα1 ≳1/2. However, the exponential instability of the numerically integrated phase‐space trajectories transforms the deterministic transport of spin fluctuations into a computationally generated stochastic process in which the global conservation laws are still satisfied to high precision. This may cause a crossover in 〈S j ( t )⋅S j 〉 from anomalous spin diffusion (α1 ≳ 1/2) to normal spin diffusion (α1 = 1/2) at some characteristic time lag that depends on the precision of the numerical integration

    The Removal Kinetics of Dissolved Organic Matter and the Optical Clarity of Groundwater

    Get PDF
    Concentrations of dissolved organic matter (DOM) and ultraviolet/visible light absorbance decrease systematically as groundwater moves through the unsaturated zones overlying aquifers and along flowpaths within aquifers. These changes occur over distances of tens of meters (m) implying rapid removal kinetics of the chromophoric DOM that imparts color to groundwater. A one-compartment input-output model was used to derive a differential equation describing the removal of DOM from the dissolved phase due to the combined effects of biodegradation and sorption. The general solution to the equation was parameterized using a 2-year record of dissolved organic carbon (DOC) concentration changes in groundwater at a long-term observation well. Estimated rates of DOC loss were rapid and ranged from 0.093 to 0.21 micromoles per liter per day (ÎŒM d−1), and rate constants for DOC removal ranged from 0.0021 to 0.011 per day (d−1). Applying these removal rate constants to an advective-dispersion model illustrates substantial depletion of DOC over flow-path distances of 200 m or less and in timeframes of 2 years or less. These results explain the low to moderate DOC concentrations (20–75 ÎŒM; 0.26–1 mg L−1) and ultraviolet absorption coefficient values (a 254 \u3c 5 m−1) observed in groundwater produced from 59 wells tapping eight different aquifer systems of the United States. The nearly uniform optical clarity of groundwater, therefore, results from similarly rapid DOM-removal kinetics exhibited by geologically and hydrologically dissimilar aquifers

    The 5T mouse multiple myeloma model: absence of c-myc oncogene rearrangement in early transplant generations.

    Get PDF
    Consistent chromosomal translocations involving the c-myc cellular oncogene and one of the three immunoglobin loci are typical for human Burkitt's lymphoma, induced mouse plasmacytoma (MPC) and spontaneously arising rat immunocytoma (RIC). Another plasma cell malignancy, multiple myeloma (MM), arising spontaneously in the ageing C57BL/KaLwRij mice, was investigated in order to see whether the MM cells contain c-myc abnormalities of the MPC or RIC type. Rearrangement of the c-myc oncogene was found in the bone marrow cells only in 5T2 MM transplantation line in a mouse of the 24th generation and in none of the seven other MM of the 5T series which were of earlier generations. Since the mouse 5T MM resembles the human MM very closely, including the absence of consistent structural c-myc oncogene abnormalities, it can serve as a useful experimental model for studies on the aetiopathogenesis of this disease

    Gain in a quantum wire laser of high uniformity

    Full text link
    A multi-quantum wire laser operating in the 1-D ground state has been achieved in a very high uniformity structure that shows free exciton emission with unprecedented narrow width and low lasing threshold. Under optical pumping the spontaneous emission evolves from a sharp free exciton peak to a red-shifted broad band. The lasing photon energy occurs about 5 meV below the free exciton. The observed shift excludes free excitons in lasing and our results show that Coulomb interactions in the 1-D electron-hole system shift the spontaneous emission and play significant roles in laser gain.Comment: 4 pages, 4 figures, prepared by RevTe

    Adaptive walks on time-dependent fitness landscapes

    Full text link
    The idea of adaptive walks on fitness landscapes as a means of studying evolutionary processes on large time scales is extended to fitness landscapes that are slowly changing over time. The influence of ruggedness and of the amount of static fitness contributions are investigated for model landscapes derived from Kauffman's NKNK landscapes. Depending on the amount of static fitness contributions in the landscape, the evolutionary dynamics can be divided into a percolating and a non-percolating phase. In the percolating phase, the walker performs a random walk over the regions of the landscape with high fitness.Comment: 7 pages, 6 eps-figures, RevTeX, submitted to Phys. Rev.

    Time--delay autosynchronization of the spatio-temporal dynamics in resonant tunneling diodes

    Full text link
    The double barrier resonant tunneling diode exhibits complex spatio-temporal patterns including low-dimensional chaos when operated in an active external circuit. We demonstrate how autosynchronization by time--delayed feedback control can be used to select and stabilize specific current density patterns in a noninvasive way. We compare the efficiency of different control schemes involving feedback in either local spatial or global degrees of freedom. The numerically obtained Floquet exponents are explained by analytical results from linear stability analysis.Comment: 10 pages, 16 figure

    The compositional and evolutionary logic of metabolism

    Full text link
    Metabolism displays striking and robust regularities in the forms of modularity and hierarchy, whose composition may be compactly described. This renders metabolic architecture comprehensible as a system, and suggests the order in which layers of that system emerged. Metabolism also serves as the foundation in other hierarchies, at least up to cellular integration including bioenergetics and molecular replication, and trophic ecology. The recapitulation of patterns first seen in metabolism, in these higher levels, suggests metabolism as a source of causation or constraint on many forms of organization in the biosphere. We identify as modules widely reused subsets of chemicals, reactions, or functions, each with a conserved internal structure. At the small molecule substrate level, module boundaries are generally associated with the most complex reaction mechanisms and the most conserved enzymes. Cofactors form a structurally and functionally distinctive control layer over the small-molecule substrate. Complex cofactors are often used at module boundaries of the substrate level, while simpler ones participate in widely used reactions. Cofactor functions thus act as "keys" that incorporate classes of organic reactions within biochemistry. The same modules that organize the compositional diversity of metabolism are argued to have governed long-term evolution. Early evolution of core metabolism, especially carbon-fixation, appears to have required few innovations among a small number of conserved modules, to produce adaptations to simple biogeochemical changes of environment. We demonstrate these features of metabolism at several levels of hierarchy, beginning with the small-molecule substrate and network architecture, continuing with cofactors and key conserved reactions, and culminating in the aggregation of multiple diverse physical and biochemical processes in cells.Comment: 56 pages, 28 figure
    • 

    corecore