570 research outputs found
Asymptotically Stable Walking of a Five-Link Underactuated 3D Bipedal Robot
This paper presents three feedback controllers that achieve an asymptotically
stable, periodic, and fast walking gait for a 3D (spatial) bipedal robot
consisting of a torso, two legs, and passive (unactuated) point feet. The
contact between the robot and the walking surface is assumed to inhibit yaw
rotation. The studied robot has 8 DOF in the single support phase and 6
actuators. The interest of studying robots with point feet is that the robot's
natural dynamics must be explicitly taken into account to achieve balance while
walking. We use an extension of the method of virtual constraints and hybrid
zero dynamics, in order to simultaneously compute a periodic orbit and an
autonomous feedback controller that realizes the orbit. This method allows the
computations to be carried out on a 2-DOF subsystem of the 8-DOF robot model.
The stability of the walking gait under closed-loop control is evaluated with
the linearization of the restricted Poincar\'e map of the hybrid zero dynamics.
Three strategies are explored. The first strategy consists of imposing a
stability condition during the search of a periodic gait by optimization. The
second strategy uses an event-based controller. In the third approach, the
effect of output selection is discussed and a pertinent choice of outputs is
proposed, leading to stabilization without the use of a supplemental
event-based controller
2004 Student Estuarine Research Project
This report describes the results of the second education and bird-monitoring program conducted by sixth grade students, teachers, and volunteers at Portsmouth Middle School. The program combined classroom lessons with field trips to monitor bird populations in South Mill Pond, a tidal pond-like estuary in front of the school. The Pond has suffered over the years from a variety of environmental problems as the City of Portsmouth developed, including major watershed changes, combined sewer overflows, runoff from city streets and parking lots, and fill projects. Several years ago, the City initiated a long-term project to re-direct sewage away from the Pond to the City\u27s wastewater treatment plant. In 2001, scientists from the University of New Hampshire joined with the City, eighth grade students and teachers from Portsmouth Middle School, and local volunteers to construct experimental shellfish reefs and salt marsh habitat in the Pond. Our project was designed to allow sixth grade students to participate in the overall community-wide program of restoring South Mill Pond. It had the dual goal of education and monitoring an ongoing habitat restoration project, and it involved approximately 175 students during Spring 2004 and 162 students during Fall 2004. The education component consisted of teaching lessons on the ecology of coastal waters, how scientists study nature, and several biology topics, including identification and ecology of birds. The bird-monitoring component of the project involved observing, identifying and recording data on birds in and around the Pond. Each observation team consisted of four to six students and one or two adult volunteers, who in most cases were parents of students in the classes. The data collected in 2004 were compared to the 2003 (year of the first bird monitoring project) data, and represented the beginning of what is anticipated as a long-term monitoring project for South Mill Pond. Similar numbers of birds and major bird types were observed in Spring 2004 compared to Spring 2003. However, during Fall 2004 many more ducks were observed compared to the Spring monitoring periods, perhaps reflecting waterfowl migratory patterns in general. This suggests that South Mill Pond may be an important feeding area for migratory ducks. The observation site that included restored shellfish reefs had the highest numbers of birds during Fall 2004. Otherwise, similar numbers and types of birds were observed in all four observation sites of the Pond both years. Future bird monitoring efforts will be able to use these data to assess long-term recovery of South Mill Pond. Both goals of the project were accomplished in substantial ways. Sixth grade students participated in an extraordinary, hands-on science project and were given the opportunity to work with professionals. The unique curriculum and lesson plans included a student handbook on the ecology of the Pond. For nearly all of the science topics covered – including photosynthesis, food webs, pollution, habitats, and others - the focus was on how they related to South Mill Pond. This made all of the lessons much more interesting and relevant
Control Barrier Function Based Quadratic Programs for Safety Critical Systems
Safety critical systems involve the tight coupling between potentially
conflicting control objectives and safety constraints. As a means of creating a
formal framework for controlling systems of this form, and with a view toward
automotive applications, this paper develops a methodology that allows safety
conditions -- expressed as control barrier functions -- to be unified with
performance objectives -- expressed as control Lyapunov functions -- in the
context of real-time optimization-based controllers. Safety conditions are
specified in terms of forward invariance of a set, and are verified via two
novel generalizations of barrier functions; in each case, the existence of a
barrier function satisfying Lyapunov-like conditions implies forward invariance
of the set, and the relationship between these two classes of barrier functions
is characterized. In addition, each of these formulations yields a notion of
control barrier function (CBF), providing inequality constraints in the control
input that, when satisfied, again imply forward invariance of the set. Through
these constructions, CBFs can naturally be unified with control Lyapunov
functions (CLFs) in the context of a quadratic program (QP); this allows for
the achievement of control objectives (represented by CLFs) subject to
conditions on the admissible states of the system (represented by CBFs). The
mediation of safety and performance through a QP is demonstrated on adaptive
cruise control and lane keeping, two automotive control problems that present
both safety and performance considerations coupled with actuator bounds
Restricted Discrete Invariance and Self-Synchronization For Stable Walking of Bipedal Robots
Models of bipedal locomotion are hybrid, with a continuous component often
generated by a Lagrangian plus actuators, and a discrete component where leg
transfer takes place. The discrete component typically consists of a locally
embedded co-dimension one submanifold in the continuous state space of the
robot, called the switching surface, and a reset map that provides a new
initial condition when a solution of the continuous component intersects the
switching surface. The aim of this paper is to identify a low-dimensional
submanifold of the switching surface, which, when it can be rendered invariant
by the closed-loop dynamics, leads to asymptotically stable periodic gaits. The
paper begins this process by studying the well-known 3D Linear Inverted
Pendulum (LIP) model, where analytical results are much easier to obtain. A key
contribution here is the notion of \textit{self-synchronization}, which refers
to the periods of the pendular motions in the sagittal and frontal planes
tending to a common period. The notion of invariance resulting from the study
of the 3D LIP model is then extended to a 9-DOF 3D biped. A numerical study is
performed to illustrate that asymptotically stable walking may be obtained.Comment: Conferenc
Torque Saturation in Bipedal Robotic Walking through Control Lyapunov Function Based Quadratic Programs
This paper presents a novel method for directly incorporating user-defined
control input saturations into the calculation of a control Lyapunov function
(CLF)-based walking controller for a biped robot. Previous work by the authors
has demonstrated the effectiveness of CLF controllers for stabilizing periodic
gaits for biped walkers, and the current work expands on those results by
providing a more effective means for handling control saturations. The new
approach, based on a convex optimization routine running at a 1 kHz control
update rate, is useful not only for handling torque saturations but also for
incorporating a whole family of user-defined constraints into the online
computation of a CLF controller. The paper concludes with an experimental
implementation of the main results on the bipedal robot MABEL
Contact-Aided Invariant Extended Kalman Filtering for Legged Robot State Estimation
This paper derives a contact-aided inertial navigation observer for a 3D
bipedal robot using the theory of invariant observer design. Aided inertial
navigation is fundamentally a nonlinear observer design problem; thus, current
solutions are based on approximations of the system dynamics, such as an
Extended Kalman Filter (EKF), which uses a system's Jacobian linearization
along the current best estimate of its trajectory. On the basis of the theory
of invariant observer design by Barrau and Bonnabel, and in particular, the
Invariant EKF (InEKF), we show that the error dynamics of the point
contact-inertial system follows a log-linear autonomous differential equation;
hence, the observable state variables can be rendered convergent with a domain
of attraction that is independent of the system's trajectory. Due to the
log-linear form of the error dynamics, it is not necessary to perform a
nonlinear observability analysis to show that when using an Inertial
Measurement Unit (IMU) and contact sensors, the absolute position of the robot
and a rotation about the gravity vector (yaw) are unobservable. We further
augment the state of the developed InEKF with IMU biases, as the online
estimation of these parameters has a crucial impact on system performance. We
evaluate the convergence of the proposed system with the commonly used
quaternion-based EKF observer using a Monte-Carlo simulation. In addition, our
experimental evaluation using a Cassie-series bipedal robot shows that the
contact-aided InEKF provides better performance in comparison with the
quaternion-based EKF as a result of exploiting symmetries present in the system
dynamics.Comment: Published in the proceedings of Robotics: Science and Systems 201
RF sensing for real-time monitoring of plasma processing
A novel sensing system based on the microwave resonance probe is compared to standard RF metrology. The system uses an antenna in the glow discharge to excite the bulk plasma at a frequency range of 30 MHz to 1 GHz. Standard RF metrology is implemented by measuring the fundamental and five harmonics of the RF power signal. An experiment varying power, pressure, CF4CF4 and O2O2 is constructed. Using a subset of the data to regress a model, standard RF sensing reconstructs the experimental variables with a best average R2R2 of 0.586 at a high model coefficient variance (σb2),(σb2), whereas the novel sensing system results in a best average R2R2 of 0.804 and an order of magnitude lower σb2.σb2. © 1998 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87554/2/442_1.pd
- …