2,599 research outputs found

    Real-time co-ordinated resource management in a computational enviroment

    Get PDF
    Design co-ordination is an emerging engineering design management philosophy with its emphasis on timeliness and appropriateness. Furthermore, a key element of design coordination has been identified as resource management, the aim of which is to facilitate the optimised use of resources throughout a dynamic and changeable process. An approach to operational design co-ordination has been developed, which incorporates the appropriate techniques to ensure that the aim of co-ordinated resource management can be fulfilled. This approach has been realised within an agent-based software system, called the Design Coordination System (DCS), such that a computational design analysis can be managed in a coherent and co-ordinated manner. The DCS is applied to a computational analysis for turbine blade design provided by industry. The application of the DCS involves resources, i.e. workstations within a computer network, being utilised to perform the computational analysis involving the use of a suite of software tools to calculate stress and vibration characteristics of turbine blades. Furthermore, the application of the system shows that the utilisation of resources can be optimised throughout the computational design analysis despite the variable nature of the computer network

    A methodology for design coordination in a distributed computing environment

    Get PDF
    At the conceptual stage of the design process it is increasingly common that analysis tools are involved in the evaluation of a large number of alternative designs. Designers use such analysis tools to assist with large scale concept evaluations and the prediction of good initial designs. Consequently there exists a need to coordinate these analysis tools to enable the early stage of design to be performed in a timely and efficient manner. This paper describes a generic methodology that allows the management and coordination of design analysis tools. A Computer Aided Design tool, namely the Design Coordination System (DCS), has been developed to assist the designer in performing computational analysis in a distributed computing environment. Within the DCS, a collection of design agents act as members of a multi-functional team operating in a cooperative and coordinated manner in order to satisfy the objective of efficiently performing the design analysis

    A generic coordination approach applied to a manufacturing environment

    Get PDF
    This paper describes a generic coordination approach applied to the field of manufacturing engineering. The objective of the coordination mechanism with respect to this application is twofold. Firstly, it is shown that utilising the developed system can result in the efficient organisation of processes leading to a near optimum time taken to manufacture a number of artefacts. Secondly, successful operation of the system in this environment will demonstrate that the approach is generic in nature. The results already achieved using this system within a computational analysis environment supports this hypothesis

    A methodology for prospective operational design co-ordination

    Get PDF
    Engineering companies are continually faced with the challenge of how best to utilise their design team given some design project. Decisions regarding how to distribute the project workload amongst the members of the design team are the responsibility of a project manager who, in order to do this, often relies upon previous experience and/or the support of some planning tool. Furthermore, a project manager rarely has the opportunity to assess the capability of the design team against the current work load in order to determine what, if any, alterations couldbe made to the team to facilitate appropriate reductions in project time and cost.This paper proposes a mathematical-based methodology aimed at identifying shortfalls in design teams, which if remedied would result in a more efficient project in terms of time and cost. The methodology provides a means of identifying those skills within the design team,with respect to the outstanding work load, in which improvements would have the greatest influence on reducing time and cost. In addition, the methodology employs a genetic algorithm for the purpose of scheduling tasks to be undertaken by potential design teams. The methodology is applied to two practical case studies provided by engineering industry.The first case study involves the assessment of a multi-disciplined design team consisting of single-skilled engineers. In contrast, the second case study entails the assessment of multiskilled engineers within a multi-disciplined design team. As a result of applying the methodology to the case studies, potential improvement to the design teams are identified and, subsequently, evaluated by observing their effects

    Real-time co-ordinated scheduling using a genetic algorithm

    Get PDF
    Real-time co-ordination is an emerging approach to operational engineering management aimed at being more comprehensive and widely applicable than existing approaches. Schedule management is a key characteristic of operational co-ordination related to managing the planning and dynamic assignment of tasks to resources, and the enactment of the resulting schedules, throughout a changeable process. This paper presents the application of an agent-oriented system, called the Design Co-ordination System, to an industrial case study in order to demonstrate the appropriate use of a genetic algorithm for the purpose of real-time scheduling. The application demonstrates that real-time co-ordinated scheduling can provide significant reductions in time to complete the computational design process

    A preliminary approach for modelling and planning the composition of engineering project teams

    Get PDF
    Managing engineering projects is a complex activity involving multiskilled engineers, who have varying levels of capability in these skills. This paper outlines a preliminary approach to modelling and planning the composition of engineering project teams, taking into consideration the skills and capabilities of engineers and the nature of the project work to be undertaken. The approach includes a simple means of identifying engineers' skills and then quantifying their level of capability in these skills. Subsequently, the approach uses a genetic algorithm along with a task-to-engineer allocation strategy to establish how best to utilize the mix of skills and capabilities of the team of engineers assigned to the project under consideration. The approach also provides a means of identifying imbalances or shortfalls in skill and capability within a team, and the formulation of an appropriate development strategy to redress/overcome them. An application of the approach to an industrial case study is presented, which led to significant potential reductions in expected project duration and labour cost. These potential reductions could be achieved by appropriately modelling engineers' skills and capabilities, and redressing the imbalance within the team through proposed changes to its composition

    Spectral transform simulations of finite amplitude double-diffusive instabilities in two dimensions

    Get PDF
    Simulations of double-diffusion with a two-dimensional, vertical plane spectral transform model reveal details of finite amplitude behavior in salt finger, interleaving and diffusive instabilities. Within the range of fluid parameters studied (3 \u3c σ \u3c 10, .1 \u3c r \u3c .5), infinite, fastest-growing fingers are unstable to Holyer\u27s (1984) nonoscillatory instability and are completely disrupted by it. Finite fingers localized on density steps are also disrupted. Initialized density steps are eroded (the gradients reduced). Fluxes and other diagnostic quantities were determined for salt finger fields at statistical stationarity. These fields contain transitory, irregular finger structures. Fluxes decline steeply as Rfp increases. A single point of comparison of buoyancy flux with ocean measurement yielded good agreement. The dependence of flux ratio on the stability parameter is similar to the linear theory prediction for fastest-growing, infinite fingers and does not increase as Rfp approaches 1, in contrast to laboratory measurements. Holyer\u27s (1984) Floquet theory is extended to the case of nonzero, density compensating, horizontal gradients, and, together with the simulation results, encourages the interpretation of the interleaving instability as being sloping salt fingers. A few preliminary simulations of the diffusive regime indicate very complex behavior. A growing oscillatory perturbation can lead to subcritical convective instability. Such motions sharpen initialized density steps. In the presence of a step, unstable motions are supported even when the fluid is linearly stable to both convection and the diffusive mode

    Two distinct mechanisms localise cyclin B transcripts in syncytial Drosophila embryos

    Get PDF
    We demonstrate that two independent mechanisms act on maternally derived cyclin B transcripts to concentrate the transcripts at the posterior pole of the Drosophila oocyte and at the cortex of the syncytial embryo. The cortical accumulation occurs because the cyclin B transcript is concentrated around nuclei and comigrates with them to the cortex. The perinuclear localisation of the transcript is blocked by inhibitors of microtubule polymerisation and the transcript colocalises with microtubular structures during the cell cycle, suggesting that the transcript is associated either directly or indirectly with microtubules. Neither microtubules nor actin filaments are required to maintain the posterior concentration of cyclin B transcripts. Instead, this seems to depend on the association of the transcripts with a component of the posterior cytoplasm. The distribution pattern of the transcript at the posterior pole throughout embryogenesis and in a variety of mutant embryos suggests that this component is associated with polar granules

    Integrated engineering environments for large complex products

    Get PDF
    An introduction is given to the Engineering Design Centre at the University of Newcastle upon Tyne, along with a brief explanation of the main focus towards large made-to-order products. Three key areas of research at the Centre, which have evolved as a result of collaboration with industrial partners from various sectors of industry, are identified as (1) decision support and optimisation, (2) design for lifecycle, and (3) design integration and co-ordination. A summary of the unique features of large made-to-order products is then presented, which includes the need for integration and co-ordination technologies. Thus, an overview of the existing integration and co-ordination technologies is presented followed by a brief explanation of research in these areas at the Engineering Design Centre. A more detailed description is then presented regarding the co-ordination aspect of research being conducted at the Engineering Design Centre, in collaboration with the CAD Centre at the University of Strathclyde. Concurrent Engineering is acknowledged as a strategy for improving the design process, however design coordination is viewed as a principal requirement for its successful implementation. That is, design co-ordination is proposed as being the key to a mechanism that is able to maximise and realise any potential opportunity of concurrency. Thus, an agentoriented approach to co-ordination is presented, which incorporates various types of agents responsible for managing their respective activities. The co-ordinated approach, which is implemented within the Design Co-ordination System, includes features such as resource management and monitoring, dynamic scheduling, activity direction, task enactment, and information management. An application of the Design Co-ordination System, in conjunction with a robust concept exploration tool, shows that the computational design analysis involved in evaluating many design concepts can be performed more efficiently through a co-ordinated approach

    EpiphaNet: An Interactive Tool to Support Biomedical Discoveries

    Get PDF
    Background. EpiphaNet (http://epiphanet.uth.tmc.edu) is an interactive knowledge discovery system, which enables researchers to explore visually sets of relations extracted from MEDLINE using a combination of language processing techniques. In this paper, we discuss the theoretical and methodological foundations of the system, and evaluate the utility of the models that underlie it for literature‐based discovery. In addition, we present a summary of results drawn from a qualitative analysis of over six hours of interaction with the system by basic medical scientists. Results: The system is able to simulate open and closed discovery, and is shown to generate associations that are both surprising and interesting within the area of expertise of the researchers concerned. Conclusions: EpiphaNet provides an interactive visual representation of associations between concepts, which is derived from distributional statistics drawn from across the spectrum of biomedical citations in MEDLINE. This tool is available online, providing biomedical scientists with the opportunity to identify and explore associations of interest to them
    • 

    corecore