273 research outputs found
Negaton and Positon Solutions of the KDV Equation
We give a systematic classification and a detailed discussion of the
structure, motion and scattering of the recently discovered negaton and positon
solutions of the Korteweg-de Vries equation. There are two distinct types of
negaton solutions which we label and , where is the
order of the Wronskian used in the derivation. For negatons, the number of
singularities and zeros is finite and they show very interesting time
dependence. The general motion is in the positive direction, except for
certain negatons which exhibit one oscillation around the origin. In contrast,
there is just one type of positon solution, which we label . For
positons, one gets a finite number of singularities for odd, but an
infinite number for even values of . The general motion of positons is in
the negative direction with periodic oscillations. Negatons and positons
retain their identities in a scattering process and their phase shifts are
discussed. We obtain a simple explanation of all phase shifts by generalizing
the notions of ``mass" and ``center of mass" to singular solutions. Finally, it
is shown that negaton and positon solutions of the KdV equation can be used to
obtain corresponding new solutions of the modified KdV equation.Comment: 20 pages plus 12 figures(available from authors on request),Latex
fil
New data on the ichthyosaur Platypterygius hercynicus and its implications for the validity of the genus
The description of a nearly complete skull from the late Albian of northwestern France
reveals previously unknown anatomical features of Platypterygius hercynicus (Kuhn 1946),
and of European Cretaceous ichthyosaurs in general. These include a wide frontal forming the
anteromedial border of the supratemporal fenestra, a parietal excluded from the parietal
foramen, and the likely presence of a squamosal, inferred from a very large and deep facet on
the quadratojugal. The absence of a squamosal has been considered as an autapomorphy of
the genus Platypterygius for more than ten years and has been applied to all known species by
default, but the described specimen casts doubt on this putative autapomorphy. Actually, it is
shown that all characters that have been proposed previously as autapomorphic for the genus
Platypterygius are either not found in all the species currently referred to this genus, or are
also present in other Ophthalmosauridae. Consequently, the genus Platypterygius must be
completely revised.Peer reviewe
Efficient Photodynamic Therapy against Gram-Positive and Gram-Negative Bacteria Using THPTS, a Cationic Photosensitizer Excited by Infrared Wavelength
The worldwide rise in the rates of antibiotic resistance of bacteria underlines the need for alternative antibacterial agents. A promising approach to kill antibiotic-resistant bacteria uses light in combination with a photosensitizer to induce a phototoxic reaction. Concentrations of 1, 10 and 100µM of tetrahydroporphyrin-tetratosylat (THPTS) and different incubation times (30, 90 and 180min) were used to measure photodynamic efficiency against two Gram-positive strains of S.aureus (MSSA and MRSA), and two Gram-negative strains of E.coli and P.aeruginosa. We found that phototoxicity of the drug is independent of the antibiotic resistance pattern when incubated in PBS for the investigated strains. Also, an incubation with 100µM THPTS followed by illumination, yielded a 6lg (≥99.999%) decrease in the viable numbers of all bacteria strains tested, indicating that the THPTS drug has a high degree of photodynamic inactivation. We then modulated incubation time, photosensitizer concentration and monitored the effect of serum on the THPTS activity. In doing so, we established the conditions to obtain the strongest bactericidal effect. Our results suggest that this new and highly pure synthetic compound should improve the efficiency of photodynamic therapy against multiresistant bacteria and has a significant potential for clinical applications in the treatment of nosocomial infections
New ophthalmosaurid ichthyosaurs from the European lower cretaceous demonstrate extensive ichthyosaur survival across the Jurassic–Cretaceous boundary
Background
Ichthyosauria is a diverse clade of marine amniotes that spanned most of the Mesozoic. Until recently, most authors interpreted the fossil record as showing that three major extinction events affected this group during its history: one during the latest Triassic, one at the Jurassic–Cretaceous boundary (JCB), and one (resulting in total extinction) at the Cenomanian-Turonian boundary. The JCB was believed to eradicate most of the peculiar morphotypes found in the Late Jurassic, in favor of apparently less specialized forms in the Cretaceous. However, the record of ichthyosaurs from the Berriasian–Barremian interval is extremely limited, and the effects of the end-Jurassic extinction event on ichthyosaurs remains poorly understood.
Methodology/Principal Findings
Based on new material from the Hauterivian of England and Germany and on abundant material from the Cambridge Greensand Formation, we name a new ophthalmosaurid, Acamptonectes densus gen. et sp. nov. This taxon shares numerous features with Ophthalmosaurus, a genus now restricted to the Callovian–Berriasian interval. Our phylogenetic analysis indicates that Ophthalmosauridae diverged early in its history into two markedly distinct clades, Ophthalmosaurinae and Platypterygiinae, both of which cross the JCB and persist to the late Albian at least. To evaluate the effect of the JCB extinction event on ichthyosaurs, we calculated cladogenesis, extinction, and survival rates for each stage of the Oxfordian–Barremian interval, under different scenarios. The extinction rate during the JCB never surpasses the background extinction rate for the Oxfordian–Barremian interval and the JCB records one of the highest survival rates of the interval.
Conclusions/Significance
There is currently no evidence that ichthyosaurs were affected by the JCB extinction event, in contrast to many other marine groups. Ophthalmosaurid ichthyosaurs remained diverse from their rapid radiation in the Middle Jurassic to their total extinction at the beginning of the Late Cretaceous
Depth Profiling Photoelectron-Spectroscopic Study of an Organic Spin Valve with a Plasma-Modified Pentacene Spacer
[[abstract]]We report an enhanced magnetoresistance (MR) in an organic spin valve with an oxygen plasma-treated pentacene (PC) spacer. The spin valve containing PC without the treatment shows no MR effect, whereas those with moderately plasma-treated PC exhibit MR ratios up to 1.64% at room temperature. X-ray photoelectron spectroscopy with depth profiling is utilized to characterize the interfacial electronic properties of the plasma-treated PC spacer which shows the formation of a derivative oxide layer. The results suggest an alternative approach to improve the interface quality and in turn to enhance the MR performance in organic spin valves.[[incitationindex]]SCI[[booktype]]電子
Antimicrobial and cell-penetrating peptides induce lipid vesicle fusion by folding and aggregation
According to their distinct biological functions, membrane-active peptides are generally classified as antimicrobial (AMP), cell-penetrating (CPP), or fusion peptides (FP). The former two classes are known to have some structural and physicochemical similarities, but fusogenic peptides tend to have rather different features and sequences. Nevertheless, we found that many CPPs and some AMPs exhibit a pronounced fusogenic activity, as measured by a lipid mixing assay with vesicles composed of typical eukaryotic lipids. Compared to the HIV fusion peptide (FP23) as a representative standard, all designer-made peptides showed much higher lipid-mixing activities (MSI-103, MAP, transportan, penetratin, Pep1). Native sequences, on the other hand, were less fusogenic (magainin 2, PGLa, gramicidin S), and pre-aggregated ones were inactive (alamethicin, SAP). The peptide structures were characterized by circular dichroism before and after interacting with the lipid vesicles. A striking correlation between the extent of conformational change and the respective fusion activities was found for the series of peptides investigated here. At the same time, the CD data show that lipid mixing can be triggered by any type of conformation acquired upon binding, whether α-helical, β-stranded, or other. These observations suggest that lipid vesicle fusion can simply be driven by the energy released upon membrane binding, peptide folding, and possibly further aggregation. This comparative study of AMPs, CPPs, and FPs emphasizes the multifunctional aspects of membrane-active peptides, and it suggests that the origin of a peptide (native sequence or designer-made) may be more relevant to define its functional range than any given name
Temperature and Pressure Dependence of the Optical Absorption and Luminescence of a Defect in TlCl
The luminescence associated with an absorption band at about 3.0 eV in chalcogen-doped TlCl has been observed. The temperature and pressure coefficients of the positions of the absorption and emission peaks have been found to have "anomalous" negative signs. The temperature coefficient of the absorption peak is dominated by the effect of thermal expansion, the band shifting toward the blue as the lattice expands. The emission peak exhibits very little temperature dependence. Some arguments are presented in favor of interpreting this band as an exciton band associated with an anion vacancy (α band) instead of an F band. Lattice relaxation may cause the emission to occur at Cl2− molecule-ions near the vacancy.This article is from Physical Review 159 (1967): 687, doi:10.1103/PhysRev.159.687. Posted with permission.</p
- …