31,748 research outputs found

    Commercialising Australia's interstate rail freight transport: Some ownership and investment issues

    Get PDF
    The paper addresses the issues of rights of way ownership and application of consistent investment appraisal techniques across modes of transport. There are linkages between ownership, rights of way, competitive strategies and market contestability which will have a significant bearing on the choice of investment criteria used by commercialised railways. Investment methodologies in competing modes of land transport must be consistent. Investment in individual elements of railway infrastructure must be integrated with the overall cost recovery strategy of the operator. Major railway projects must be submitted to both financial and economic evaluation, so that the interests of individual railway authorities and the community are considered

    Global-String and Vortex Superfluids in a Supersymmetric Scenario

    Full text link
    The main goal of this work is to investigate the possibility of finding the supersymmetric version of the U(1)-global string model which behaves as a vortex-superfluid. To describe the superfluid phase, we introduce a Lorentz-symmetry breaking background that, in an approach based on supersymmetry, leads to a discussion on the relation between the violation of Lorentz symmetry and explicit soft supersymmetry breakings. We also study the relation between the string configuration and the vortex-superfluid phase. In the framework we settle down in terms of superspace and superfields, we actually establish a duality between the vortex degrees of freedom and the component fields of the Kalb-Ramond superfield. We make also considerations about the fermionic excitations that may appear in connection with the vortex formation.Comment: 9 pages. This version presented the relation between Lorentz symmetry violation by the background and the appearance of terms that explicitly break SUS

    Note on Shadowing and Diffraction in Deep-Inelastic Lepton Scattering

    Full text link
    We discuss the close relation between shadowing in deep-inelastic lepton-nucleus scattering and diffractive photo- and leptoproduction of hadrons from free nucleons. We show that the magnitude of nuclear shadowing at small Bjorken-x, as measured by the E665 and NMC collaborations, is directly related to HERA data on the amount of diffraction in the scattering from free nucleons.Comment: 6 pages, Latex, to be published in Eur. Phys. J.

    Scotogenic model for co-bimaximal mixing

    Get PDF
    We present a scotogenic model, i.e. a one-loop neutrino mass model with dark right-handed neutrino gauge singlets and one inert dark scalar gauge doublet η\eta, which has symmetries that lead to co-bimaximal mixing, i.e. to an atmospheric mixing angle θ23=45\theta_{23} = 45^\circ and to a CPCP-violating phase δ=±π/2\delta = \pm \pi/2, while the mixing angle θ13\theta_{13} remains arbitrary. The symmetries consist of softly broken lepton numbers LαL_\alpha (α=e,μ,τ\alpha = e,\mu,\tau), a non-standard CPCP symmetry, and three Z2Z_2 symmetries. We indicate two possibilities for extending the model to the quark sector. Since the model has, besides η\eta, three scalar gauge doublets, we perform a thorough discussion of its scalar sector. We demonstrate that it can accommodate a Standard Model-like scalar with mass 125GeV125\, \mathrm{GeV}, with all the other charged and neutral scalars having much higher masses.Comment: v2 - 23 pages, 5 figures, minor changes requested by refere

    Flavour symmetries in a renormalizable SO(10) model

    Get PDF
    In the context of a renormalizable supersymmetric SO(10) Grand Unified Theory, we consider the fermion mass matrices generated by the Yukawa couplings to a 10120126ˉ\mathbf{10} \oplus \mathbf{120} \oplus \bar{\mathbf{126}} representation of scalars. We perform a complete investigation of the possibilities of imposing flavour symmetries in this scenario; the purpose is to reduce the number of Yukawa coupling constants in order to identify potentially predictive models. We have found that there are only 14 inequivalent cases of Yukawa coupling matrices, out of which 13 cases are generated by ZnZ_n symmetries, with suitable nn, and one case is generated by a Z2×Z2Z_2 \times Z_2 symmetry. A numerical analysis of the 14 cases reveals that only two of them---dubbed A and B in the present paper---allow good fits to the experimentally known fermion masses and mixings.Comment: 36 pages, no figures, revised fits using newer data, added fit for case A, added references, new appendices concerning the SO(10) scalar potential and inequalities for the vacuum expectation values, conclusions unchanged; some minor changes, matches published versio

    Molecule survival in magnetized protostellar disk winds. II. Predicted H2O line profiles versus Herschel/HIFI observations

    Full text link
    We investigate whether the broad wings of H2O emission identified with Herschel towards low-mass Class 0 and Class 1 protostars may be consistent with an origin in a dusty MHD disk wind, and the constraints it would set on the underlying disk properties. We present synthetic H2O line profiles predictions for a typical MHD disk wind solution with various values of disk accretion rate, stellar mass, extension of the launching area, and view angle. We compare them in terms of line shapes and intensities with the HIFI profiles observed by the WISH Key Program. We find that a dusty MHD disk wind launched from 0.2--0.6 AU AU to 3--25 AU can reproduce to a remarkable degree the observed shapes and intensities of the broad H2O component, both in the fundamental 557 GHz line and in more excited lines. Such a model also readily reproduces the observed correlation of 557 GHz line luminosity with envelope density, if the infall rate at 1000 AU is 1--3 times the disk accretion rate in the wind ejection region. It is also compatible with the typical disk size and bolometric luminosity in the observed targets. However, the narrower line profiles in Class 1 sources suggest that MHD disk winds in these sources, if present, would have to be slower and/or less water rich than in Class 0 sources. In conclusion, MHD disk winds appear as a valid (though not unique) option to consider for the origin of the broad H2O component in low-mass protostars. ALMA appears ideally suited to further test this model by searching for resolved signatures of the warm and slow wide-angle molecular wind that would be predicted.Comment: accepted for publication in A&
    corecore