136 research outputs found
Particle correlations in a fermi superfluid
We discuss correlations between particles of different momentum in a
superfluid fermi gas, accessible through noise measurements of absorption
images of the expanded gas. We include two elements missing from the simplest
treatment, based on the BCS wavefunction: the explicit use of a conserving
approximation satisfying particle number conservation, and the inclusion of the
contribution from Cooper pairs at finite momentum. We expect the latter to be a
significant issue in the strongly correlated state emerging in the BCS-BEC
crossover.Comment: Published versio
Preparation and detection of d-wave superfluidity in two-dimensional optical superlattices
We propose a controlled method to create and detect d-wave superfluidity with
ultracold fermionic atoms loaded in two-dimensional optical superlattices. Our
scheme consists in preparing an array of nearest-neighbor coupled square
plaquettes or ``superplaquettes'' and using them as building blocks to
construct a d-wave superfluid state. We describe how to use the coherent
dynamical evolution in such a system to experimentally probe the pairing
mechanism. We also derive the zero temperature phase diagram of the fermions in
a checkerboard lattice (many weakly coupled plaquettes) and show that by tuning
the inter-plaquette tunneling spin-dependently or varying the filling factor
one can drive the system into a d-wave superfluid phase or a Cooper pair
density wave phase. We discuss the use of noise correlation measurements to
experimentally probe these phases.Comment: 8 pages, 6 figure
Hybrid 2D surface trap for quantum simulation
We demonstrate a novel optical trapping scheme for ultracold atoms. Using a
combination of evanescent wave, standing wave, and magnetic potentials we
create a deeply 2D Bose-Einstein condensate (BEC) at a few microns from a glass
surface. Using techniques such as broadband "white" light to create evanescent
and standing waves, we realize a smooth potential with a trap frequency aspect
ratio of 300:1:1 and long lifetimes. This makes the setup suitable for
many-body quantum simulations and applications such as high precision
measurements close to surfaces.Comment: 5 pages, 4 figure
Precision measurement of spin-dependent interaction strengths for spin-1 and spin-2 87Rb atoms
We report on precision measurements of spin-dependent interaction-strengths
in the 87Rb spin-1 and spin-2 hyperfine ground states. Our method is based on
the recent observation of coherence in the collisionally driven spin-dynamics
of ultracold atom pairs trapped in optical lattices. Analysis of the Rabi-type
oscillations between two spin states of an atom pair allows a direct
determination of the coupling parameters in the interaction hamiltonian. We
deduce differences in scattering lengths from our data that can directly be
compared to theoretical predictions in order to test interatomic potentials.
Our measurements agree with the predictions within 20%. The knowledge of these
coupling parameters allows one to determine the nature of the magnetic ground
state. Our data imply a ferromagnetic ground state for 87Rb in the f=1
manifold, in agreement with earlier experiments performed without the optical
lattice. For 87Rb in the f=2 manifold the data points towards an
antiferromagnetic ground state, however our error bars do not exclude a
possible cyclic phase.Comment: 11 pages, 5 figure
Time interval distributions of atoms in atomic beams
We report on the experimental investigation of two-particle correlations
between neutral atoms in a Hanbury Brown and Twiss experiment. Both an atom
laser beam and a pseudo-thermal atomic beam are extracted from a Bose-Einstein
condensate and the atom flux is measured with a single atom counter. We
determine the conditional and the unconditional detection probabilities for the
atoms in the beam and find good agreement with the theoretical predictions.Comment: 4 pages, 3 figure
Probing quantum phases of ultracold atoms in optical lattices by transmission spectra in cavity QED
Studies of ultracold atoms in optical lattices link various disciplines,
providing a playground where fundamental quantum many-body concepts, formulated
in condensed-matter physics, can be tested in much better controllable atomic
systems, e.g., strongly correlated phases, quantum information processing.
Standard methods to measure quantum properties of Bose-Einstein condensates
(BECs) are based on matter-wave interference between atoms released from traps
which destroys the system. Here we propose a nondestructive method based on
optical measurements, and prove that atomic statistics can be mapped on
transmission spectra of a high-Q cavity. This can be extremely useful for
studying phase transitions between Mott insulator and superfluid states, since
various phases show qualitatively distinct light scattering. Joining the
paradigms of cavity quantum electrodynamics (QED) and ultracold gases will
enable conceptually new investigations of both light and matter at ultimate
quantum levels, which only recently became experimentally possible. Here we
predict effects accessible in such novel setups.Comment: 6 pages, 3 figure
Camparison of the Hanbury Brown-Twiss effect for bosons and fermions
Fifty years ago, Hanbury Brown and Twiss (HBT) discovered photon bunching in
light emitted by a chaotic source, highlighting the importance of two-photon
correlations and stimulating the development of modern quantum optics . The
quantum interpretation of bunching relies upon the constructive interference
between amplitudes involving two indistinguishable photons, and its additive
character is intimately linked to the Bose nature of photons. Advances in atom
cooling and detection have led to the observation and full characterisation of
the atomic analogue of the HBT effect with bosonic atoms. By contrast, fermions
should reveal an antibunching effect, i.e., a tendency to avoid each other.
Antibunching of fermions is associated with destructive two-particle
interference and is related to the Pauli principle forbidding more than one
identical fermion to occupy the same quantum state. Here we report an
experimental comparison of the fermion and the boson HBT effects realised in
the same apparatus with two different isotopes of helium, 3He (a fermion) and
4He (a boson). Ordinary attractive or repulsive interactions between atoms are
negligible, and the contrasting bunching and antibunching behaviours can be
fully attributed to the different quantum statistics. Our result shows how
atom-atom correlation measurements can be used not only for revealing details
in the spatial density, or momentum correlations in an atomic ensemble, but
also to directly observe phase effects linked to the quantum statistics in a
many body system. It may thus find applications to study more exotic situations
>.Comment: Nature 445, 402 (2007). V2 includes the supplementary informatio
Quantum many-body simulations using Gaussian phase-space representations
Phase-space representations are of increasing importance as a viable and
successful means to study exponentially complex quantum many-body systems from
first principles. This review traces the background of these methods, starting
from the early work of Wigner, Glauber and Sudarshan. We focus on modern
phase-space approaches using non-classical phase-space representations. These
lead to the Gaussian representation, which unifies bosonic and fermionic
phase-space. Examples treated include quantum solitons in optical fibers,
colliding Bose-Einstein condensates, and strongly correlated fermions on
lattices.Comment: Short Review (10 pages); Corrected typo in eq (14); Added a few more
reference
Single-Atom Resolved Fluorescence Imaging of an Atomic Mott Insulator
The reliable detection of single quantum particles has revolutionized the
field of quantum optics and quantum information processing. For several years,
researchers have aspired to extend such detection possibilities to larger scale
strongly correlated quantum systems, in order to record in-situ images of a
quantum fluid in which each underlying quantum particle is detected. Here we
report on fluorescence imaging of strongly interacting bosonic Mott insulators
in an optical lattice with single-atom and single-site resolution. From our
images, we fully reconstruct the atom distribution on the lattice and identify
individual excitations with high fidelity. A comparison of the radial density
and variance distributions with theory provides a precise in-situ temperature
and entropy measurement from single images. We observe Mott-insulating plateaus
with near zero entropy and clearly resolve the high entropy rings separating
them although their width is of the order of only a single lattice site.
Furthermore, we show how a Mott insulator melts for increasing temperatures due
to a proliferation of local defects. Our experiments open a new avenue for the
manipulation and analysis of strongly interacting quantum gases on a lattice,
as well as for quantum information processing with ultracold atoms. Using the
high spatial resolution, it is now possible to directly address individual
lattice sites. One could, e.g., introduce local perturbations or access regions
of high entropy, a crucial requirement for the implementation of novel cooling
schemes for atoms on a lattice
A Rydberg Quantum Simulator
Following Feynman and as elaborated on by Lloyd, a universal quantum
simulator (QS) is a controlled quantum device which reproduces the dynamics of
any other many particle quantum system with short range interactions. This
dynamics can refer to both coherent Hamiltonian and dissipative open system
evolution. We investigate how laser excited Rydberg atoms in large spacing
optical or magnetic lattices can provide an efficient implementation of a
universal QS for spin models involving (high order) n-body interactions. This
includes the simulation of Hamiltonians of exotic spin models involving
n-particle constraints such as the Kitaev toric code, color code, and lattice
gauge theories with spin liquid phases. In addition, it provides the
ingredients for dissipative preparation of entangled states based on
engineering n-particle reservoir couplings. The key basic building blocks of
our architecture are efficient and high-fidelity n-qubit entangling gates via
auxiliary Rydberg atoms, including a possible dissipative time step via optical
pumping. This allows to mimic the time evolution of the system by a sequence of
fast, parallel and high-fidelity n-particle coherent and dissipative Rydberg
gates.Comment: 8 pages, 4 figure
- …