134 research outputs found

    Silicon solar cell–integrated stress and temperature sensors for photovoltaic modules

    Get PDF
    We propose silicon solar cell–integrated stress and temperature sensors as a new approach for the stress and temperature measurement in photovoltaic (PV) modules. The solar cell–integrated sensors enable a direct and continuous in situ measurement of mechanical stress and temperature of solar cells within PV modules. In this work, we present a proof of concept for stress and temperature sensors on a silicon solar cell wafer. Both sensors were tested in a conventional PV module setup. For the stress sensor, a sensitivity of (−47.41 ± 0.14)%/GPa has been reached, and for the temperature sensor, a sensitivity of (3.557 ± 0.008) × 10−3^{-3} K−1^{-1} has been reached. These sensors can already be used in research for increased measurement accuracy of the temperature and the mechanical stress in PV modules because of the implementation at the precise location of the solar cells within a laminate stack, for process evaluation, in‐situ measurements in reliability tests, and the correlation with real exposure to climates

    Acceptance of technology-enhanced learning for a theoretical radiological science course: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Technology-enhanced learning (TEL) gives a view to improved education. However, there is a need to clarify how TEL can be used effectively. The study compared students' attitudes and opinions towards a traditional face-to-face course on theoretical radiological science and a TEL course where students could combine face-to-face lectures and e-learning modules at their best convenience.</p> <p>Methods</p> <p>42 third-year dental students were randomly assigned to the traditional face-to-face group and the TEL group. Both groups completed questionnaires before the beginning and after completion of the course on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning. After completion of the course both groups also filled in the validated German-language TRIL (Trierer Inventar zur Lehrevaluation) questionnaire for the evaluation of courses given at universities.</p> <p>Results</p> <p>Both groups had a positive attitude towards e-learning that did not change over time. The TEL group attended significantly less face-to-face lectures than the traditional group. However, both groups stated that face-to-face lectures were the basis for education in a theoretical radiological science course.</p> <p>The members of the TEL group rated e-mail reminders significantly more important when they filled in the questionnaire on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning for the second time after completion of the course.</p> <p>The members of the technology-enhanced learning group were significantly less confident in passing the exam compared to the members of the traditional group. However, examination results did not differ significantly for traditional and the TEL group.</p> <p>Conclusions</p> <p>It seems that technology-enhanced learning in a theoretical radiological science course has the potential to reduce the need for face-to-face lectures. At the same time examination results are not impaired. However, technology-enhanced learning cannot completely replace traditional face-to-face lectures, because students indicate that they consider traditional teaching as the basis of their education.</p

    PDGF-C Induces Maturation of Blood Vessels in a Model of Glioblastoma and Attenuates the Response to Anti-VEGF Treatment

    Get PDF
    Recent clinical trials of VEGF inhibitors have shown promise in the treatment of recurrent glioblastomas (GBM). However, the survival benefit is usually short-lived as tumors escape anti-VEGF therapies. Here we tested the hypothesis that Platelet Derived Growth Factor-C (PDGF-C), an isoform of the PDGF family, affects GBM progression independent of VEGF pathway and hinders anti-VEGF therapy.We first showed that PDGF-C is present in human GBMs. Then, we overexpressed or downregulated PDGF-C in a human GBM cell line, U87MG, and grew them in cranial windows in nude mice to assess vessel structure and function using intravital microscopy. PDGF-C overexpressing tumors had smaller vessel diameters and lower vascular permeability compared to the parental or siRNA-transfected tumors. Furthermore, vessels in PDGF-C overexpressing tumors had more extensive coverage with NG2 positive perivascular cells and a thicker collagen IV basement membrane than the controls. Treatment with DC101, an anti-VEGFR-2 antibody, induced decreases in vessel density in the parental tumors, but had no effect on the PDGF-C overexpressing tumors.These results suggest that PDGF-C plays an important role in glioma vessel maturation and stabilization, and that it can attenuate the response to anti-VEGF therapy, potentially contributing to escape from vascular normalization

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG

    Ueber die Erkennung der Qualitïżœt des Leders, namentlich des Transmissionsriemenleders

    No full text

    Ueber Beschwerung von Leder

    No full text
    • 

    corecore