744 research outputs found

    Ethics of modifying the mitochondrial genome

    Get PDF
    Recent preclinical studies have shown the feasibility of specific variants of nuclear transfer to prevent mitochondrial DNA disorders. Nuclear transfer could be a valuable reproductive option for carriers of mitochondrial mutations. A clinical application of nuclear transfer, however, would entail germ-line modification, more specifically a germ-line modification of the mitochondrial genome. One of the most prominent objections against germ-line modification is the fear that it would become possible to alter 'essential characteristics' of a future person, thereby possibly violating the child's right to an open future. As only the nuclear DNA would contain the ingredients for individual characteristics, modification of the mtDNA is often considered less controversial than modification of the nuclear DNA. This paper discusses the tenability of this dichotomy. After having clarified the concept of germ-line modification, it argues that modification of the mtDNA is not substantively different from modification of the nuclear DNA in terms of its effects on the identity of the future person. Subsequently the paper assesses how this conclusion affects the moral evaluation of nuclear transfer to prevent mtDNA disorders. It concludes that the moral acceptability of germ-line modification does not depend on whether it alters the identity of the future child-all germ-line modifications do-but on whether it safeguards the child's right to an open future. If nuclear transfer to prevent mtDNA disorders becomes safe and effective, then dismissing it because it involves germ-line modification is unjustified

    Innovative reproductive technologies: risks and responsibilities

    Get PDF

    A leap of faith? An interview study with professionals on the use of mitochondrial replacement to avoid transfer of mitochondrial diseases

    Get PDF
    STUDY QUESTION: What are the opinions of professionals in the field of genetics, reproductive science and metabolic diseases on the development of mitochondrial replacement technologies to be used in the context of medically assisted reproduction? SUMMARY ANSWER: Although concerns regarding safety remain, interviewees supported the development of nuclear transfer techniques to help women who are at risk of transferring a mitochondrial DNA disease to their offspring conceive a genetically related child. WHAT IS KNOWN ALREADY: Technological developments in the field of nuclear transfer have sparked new interest in the debate on the acceptability of the use of donor oocytes to prevent the transmission of mitochondrial diseases. For example, in the UK, extensive public consultations have been done to investigate whether such techniques would allow the passing of a law that involves making changes to a human oocyte or embryo before transfer to a woman's body. Until now, continental European countries seem to await the outcome of the British debate before themselves considering the arguments for and against this technology. STUDY DESIGN, SIZE, AND DURATION: We interviewed 12 professionals from Belgium and The Netherlands. PARTICIPANTS/MATERIALS, SETTING, AND METHODS: We conducted 12 interviews with fertility specialists, scientists, clinical geneticists, a pediatrician specialized in metabolic diseases and a specialist in metabolic diseases. The profiles of the interviewees varied but all had experience with mitochondrial diseases, either in treating patients or in providing counseling to patients or to prospective parents. The interviews were conducted face-to-face and took 30-45 min. The language of the interviews was Dutch. We analyzed the transcript of these interviews using QSR NVIVO 10 software to extract themes and categories. MAIN RESULTS AND THE ROLE OF CHANCE: This study has shown that, although amongst the professionals we interviewed there was support for the development and deployment of nuclear transfer, this support does not necessarily correspond to uniform opinions about the importance of having a genetically own child or the contribution of mitochondrial DNA to essential characteristics of an individual. LIMITATIONS, REASONS FOR CAUTION: In translating the quotes from Dutch to English some of the linguistic nuances may have been lost. We only interviewed 12 individuals, in two countries, whose view may not be representative of existing values and opinions that may be held by professionals worldwide on this matter. To further explore the issue at hand, a subsequent investigation of the opinions of people affected by mitochondrial diseases and of the general public is necessary. WIDER IMPLICATIONS OF THE FINDINGS: With this study we have demonstrated there is in principle support for the nuclear transfer technique from Dutch and Belgian professionals. Further research, both scientific and ethical, is needed to define the modalities of its possible introduction in the fertility clinic

    Dynamics and Ethics of Comprehensive Preimplantation Genetic Testing. A Review of the Challenges

    Get PDF
    BACKGROUND: Genetic testing of preimplantation embryos has been used for preimplantation genetic diagnosis (PGD) and preimplantation genetic screening (PGS). Microarray technology is being introduced in both these contexts, and is to be expected that also whole genome sequencing of blastomeres will become possible. The amount of extra information such tests will yield may prove to be beneficial for embryo selection, but also raise various ethical issues. We present an overview of the developments and an agenda-setting exploration of the ethical issues. METHODS: The paper is a joint endeavour by the presenters at an explorative 'campus meeting' organized by the European Society of Human Reproduction and Embryology in cooperation with the department of Health, Ethics & Society of the Maastricht University (The Netherlands). RESULTS: The increasing amount and detail of information that new screening techniques such as microarrays and whole genome sequencing offer does not automatically coincide with an increasing understanding of the prospects of an embryo. From a technical point of view, the future of comprehensive embryo testing may go together with developments in preconception carrier screening. From an ethical point of view, the increasing complexity and amount of information yielded by comprehensive testing techniques will lead to challenges to the principle of reproductive autonomy and the right of the child to an open future, and may imply a possible larger responsibility of the clinician towards the welfare of the future child. “Smart combinations” of preconception carrier testing and embryo testing may solve some of these ethical questions but could introduce others. CONCLUSION: As comprehensive testing techniques are entering the IVF clinic, there is a need for a thorough rethinking of traditional ethical paradigms regarding medically assisted reproduction.This article was written by Dr Ainsley Newson during the time of her employment with the University of Bristol, UK (2006-2012). Self-archived in the Sydney eScholarship Repository with permission of Bristol University, Sept 2014

    Is germ-line genome modification ethically justified?

    Get PDF
    As the normative objections to (human) germline genome editing cannot convincingly justify a categorical prohibition of such editing, its present prohibition should be replaced by a strict regulation, i.e. a conditional allowance. If safe and effective, germline genome editing may become a useful reproductive option.</p

    Recommendations for sepsis management in resource-limited settings

    Get PDF
    PURPOSE: To provide clinicians practicing in resource-limited settings with a framework to improve the diagnosis and treatment of pediatric and adult patients with sepsis. METHODS: The medical literature on sepsis management was reviewed. Specific attention was paid to identify clinical evidence on sepsis management from resource-limited settings. RESULTS: Recommendations are grouped into acute and post-acute interventions. Acute interventions include liberal fluid resuscitation to achieve adequate tissue perfusion, normal heart rate and arterial blood pressure, use of epinephrine or dopamine for inadequate tissue perfusion despite fluid resuscitation, frequent measurement of arterial blood pressure in hemodynamically unstable patients, administration of hydrocortisone or prednisolone to patients requiring catecholamines, oxygen administration to achieve an oxygen saturation &gt;90%, semi-recumbent and/or lateral position, non-invasive ventilation for increased work of breathing or hypoxemia despite oxygen therapy, timely administration of adequate antimicrobials, thorough clinical investigation for infectious source identification, fluid/tissue sampling and microbiological work-up, removal, drainage or debridement of the infectious source. Post-acute interventions include regular re-assessment of antimicrobial therapy, administration of antimicrobials for an adequate but not prolonged duration, avoidance of hypoglycemia, pharmacological or mechanical deep vein thrombosis prophylaxis, resumption of oral food intake after resuscitation and regaining of consciousness, careful use of opioids and sedatives, early mobilization, and active weaning of invasive support. Specific considerations for malaria, puerperal sepsis and HIV/AIDS patients with sepsis are included. CONCLUSION: Only scarce evidence exists for the management of pediatric and adult sepsis in resource-limited settings. The presented recommendations may help to improve sepsis management in middle- and low-income countries
    • …
    corecore