5 research outputs found

    Einfluss jahreszeitich unterschiedlicher Na-Belastung auf Photosynthese, Transpiration und Fruchtqualitaet von Apfelbaeumen

    No full text
    SIGLEAvailable from: Hannover Univ. (Germany, F.R.). Universitaetsbibliothek / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    Einfluss jahreszeitlich unterschiedlicher Na-Belastung auf Photosynthese, Transpiration und Fruchtqualitaet von Apfelbaeumen

    No full text
    SIGLEAvailable from: Zentralstelle fuer Agrardokumentation und -information (ZADI), Villichgasse 17, D-53177 Bonn / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    Peptide transport by the multidrug resistance protein MRP1

    No full text
    Small hydrophobic peptides were studied as possible substrates of the multidrug resistance protein (MRP)-1 (ABCC1) transmembrane transporter molecule. As observed earlier for P-glycoprotein- (Pgp; ABCB1) overexpressing cells, MRP1-overexpressing cells, including cells stably transfected with the MRP1 cDNA, showed distinct resistance to the cytotoxic peptide N-acetyl-Leu-Leu-norleucinal (ALLN). Resistance to this peptide and another toxic peptide derivative, which is based on a Thr-His-Thr-Nle-Glu-Gly backbone conjugated to butyl and benzyl groups (4A6), could be reversed by MRP1 inhibitors. The reduced toxicity of 4A6 in MRP1-overexpressing cells was found to be associated with lower accumulation of a fluorescein-labeled derivative of this peptide. Glutathione (GSH) depletion had a clear effect on resistance to ALLN but hardly affected 4A6 resistance. In a limited structure-activity study using peptides that are analogous to 4A6, MRP1-overexpressing cells were found to be resistant to these peptides as well. Remarkably, when selecting A2780 ovarian cancer cells for resistance to ALLN, even in the absence of Pgp blockers, resulting cell lines had up-regulated MRP1, rather than any of the other currently known multidrug resistance transporter molecules including Pgp, MRP2 (ABCC2), MRP3 (ABCC3), MRP5 (ABCCS), and the breast cancer resistance protein ABCG2. ALLN-resistant, MRP1-overexpressing cells were found to be cross-resistant to 4A6 and the classical multidrug resistance drugs doxorubicin, vincristine, and etoposide. This establishes MRP1 as a transporter for small hydrophobic peptides. More extensive structure-activity relationship studies should allow the identification of clinically useful peptide antagonists of MRP
    corecore