66 research outputs found

    Magnetoresistance of disordered graphene: from low to high temperatures

    Full text link
    We present the magnetoresistance (MR) of highly doped monolayer graphene layers grown by chemical vapor deposition on 6H-SiC. The magnetotransport studies are performed on a large temperature range, from TT = 1.7 K up to room temperature. The MR exhibits a maximum in the temperature range 120−240120-240 K. The maximum is observed at intermediate magnetic fields (B=2−6B=2-6 T), in between the weak localization and the Shubnikov-de Haas regimes. It results from the competition of two mechanisms. First, the low field magnetoresistance increases continuously with TT and has a purely classical origin. This positive MR is induced by thermal averaging and finds its physical origin in the energy dependence of the mobility around the Fermi energy. Second, the high field negative MR originates from the electron-electron interaction (EEI). The transition from the diffusive to the ballistic regime is observed. The amplitude of the EEI correction points towards the coexistence of both long and short range disorder in these samples

    Interplay between interferences and electron-electron interactions in epitaxial graphene

    Full text link
    We separate localization and interaction effects in epitaxial graphene devices grown on the C-face of a 4H-SiC substrate by analyzing the low temperature conductivities. Weak localization and antilocalization are extracted at low magnetic fields, after elimination of a geometric magnetoresistance and subtraction of the magnetic field dependent Drude conductivity. The electron electron interaction correction is extracted at higher magnetic fields, where localization effects disappear. Both phenomena are weak but sizable and of the same order of magnitude. If compared to graphene on silicon dioxide, electron electron interaction on epitaxial graphene are not significantly reduced by the larger dielectric constant of the SiC substrate

    The hole Fermi surface in Bi2_{2}Se3_{3} probed by quantum oscillations

    Full text link
    Transport and torque magnetometry measurements are performed at high magnetic fields and low temperatures in a series of p-type (Ca-doped) Bi2_{2}Se3_{3} crystals. The angular dependence of the Shubnikov-de Haas and de Haas-van Alphen quantum oscillations enables us to determine the Fermi surface of the bulk valence band states as a function of the carrier density. At low density, the angular dependence exhibits a downturn in the oscillations frequency between 0∘0^\circ and 90∘90^\circ, reflecting a bag-shaped hole Fermi surface. The detection of a single frequency for all tilt angles rules out the existence of a Fermi surface with different extremal cross-sections down to 2424~meV. There is therefore no signature of a camel-back in the valence band of our bulk samples, in accordance with the direct band gap predicted by GWGW calculations.Comment: A supplemental material file giving a more detailed description of our work is available upon reques

    Magneto-transport in high g-factor, low-density two-dimensional electron systems confined in In_0.75Ga_0.25As/In_0.75Al_0.25As quantum wells

    Full text link
    We report magneto-transport measurements on high-mobility two-dimensional electron systems (2DESs) confined in In_0.75Ga_0.25As/In_0.75Al_0.25As single quantum wells. Several quantum Hall states are observed in a wide range of temperatures and electron densities, the latter controlled by a gate voltage down to values of 1.10^11 cm^-2. A tilted-field configuration is used to induce Landau level crossings and magnetic transitions between quantum Hall states with different spin polarizations. A large filling factor dependent effective electronic g-factor is determined by the coincidence method and cyclotron resonance measurements. From these measurements the change in exchange-correlation energy at the magnetic transition is deduced. These results demonstrate the impact of many-body effects in tilted-field magneto-transport of high-mobility 2DESs confined in In_0.75Ga_0.25As/In_0.75Al_0.25As quantum wells. The large tunability of electron density and effective g-factor, in addition, make this material system a promising candidate for the observation of a large variety of spin-related phenomena.Comment: 7 pages, 5 figure

    Growth of monolayer graphene on 8deg off-axis 4H-SiC (000-1) substrates with application to quantum transport devices

    Full text link
    Using high temperature annealing conditions with a graphite cap covering the C-face of an 8deg off-axis 4H-SiC sample, large and homogeneous single epitaxial graphene layers have been grown. Raman spectroscopy shows evidence of the almost free-standing character of these monolayer graphene sheets, which was confirmed by magneto-transport measurements. We find a moderate p-type doping, high carrier mobility and half integer Quantum Hall effect typical of high quality graphene samples. This opens the way to a fully compatible integration of graphene with SiC devices on the wafers that constitute the standard in today's SiC industry.Comment: 11 pages, 4 figures , Submitted in AP

    Anti-crossings of spin-split Landau levels in an InAs two-dimensional electron gas with spin-orbit coupling

    Full text link
    We report tilted-field transport measurements in the quantum-Hall regime in an InAs/In_0.75Ga_0.25As/In_0.75Al_0.25As quantum well. We observe anti-crossings of spin-split Landau levels, which suggest a mixing of spin states at Landau level coincidence. We propose that the level repulsion is due to the presence of spin-orbit and of band-non-parabolicity terms which are relevant in narrow-gap systems. Furthermore, electron-electron interaction is significant in our structure, as demonstrated by the large values of the interaction-induced enhancement of the electronic g-factor.Comment: 4 pages, 3 figure

    Temperature-induced topological phase transition in HgTe quantum wells

    Full text link
    We report a direct observation of temperature-induced topological phase transition between trivial and topological insulator in HgTe quantum well. By using a gated Hall bar device, we measure and represent Landau levels in fan charts at different temperatures and we follow the temperature evolution of a peculiar pair of "zero-mode" Landau levels, which split from the edge of electron-like and hole-like subbands. Their crossing at critical magnetic field BcB_c is a characteristic of inverted band structure in the quantum well. By measuring the temperature dependence of BcB_c, we directly extract the critical temperature TcT_c, at which the bulk band-gap vanishes and the topological phase transition occurs. Above this critical temperature, the opening of a trivial gap is clearly observed.Comment: 5 pages + Supplemental Materials; Phys. Rev. Lett. (accepted

    Anomalous magnetotransport and cyclotron resonance of high mobility magnetic 2DHGs in the quantum Hall regime

    Full text link
    Low temperature magnetotransport measurements and far infrared transmission spectroscopy are reported in molecular beam epitaxial grown two-dimensional hole systems confined in strained InAs quantum wells with magnetic impurities in the channel. The interactions of the free holes spin with the magnetic moment of 5/2 provided by manganese features intriguing localization phenomena and anomalies in the Hall and the quantum Hall resistance. In magnetic field dependent far infrared spectroscopy measurements well pronounced cyclotron resonance and an additional resonance are found that indicates an anticrossing with the cyclotron resonance
    • …
    corecore