406,092 research outputs found
Parametric down-conversion from a wave-equations approach: geometry and absolute brightness
Using the approach of coupled wave equations, we consider spontaneous
parametric down-conversion (SPDC) in the narrow-band regime and its
relationship to classical nonlinear processes such as sum-frequency generation.
We find simple expressions in terms of mode overlap integrals for the absolute
pair production rate into single spatial modes, and simple relationships
between the efficiencies of the classical and quantum processes. The results,
obtained with Green function techniques, are not specific to any geometry or
nonlinear crystal. The theory is applied to both degenerate and non-degenerate
SPDC. We also find a time-domain expression for the correlation function
between filtered signal and idler fields.Comment: 10 pages, no figure
Phonon-mediated electron spin phase diffusion in a quantum dot
An effective spin relaxation mechanism that leads to electron spin
decoherence in a quantum dot is proposed. In contrast to the common
calculations of spin-flip transitions between the Kramers doublets, we take
into account a process of phonon-mediated fluctuation in the electron spin
precession and subsequent spin phase diffusion. Specifically, we consider
modulations in the longitudinal g-factor and hyperfine interaction induced by
the phonon-assisted transitions between the lowest electronic states. Prominent
differences in the temperature and magnetic field dependence between the
proposed mechanisms and the spin-flip transitions are expected to facilitate
its experimental verification. Numerical estimation demonstrates highly
efficient spin relaxation in typical semiconductor quantum dots.Comment: 5 pages, 1 figur
A very efficient RCS data compression and reconstruction technique, volume 4
A very efficient compression and reconstruction scheme for RCS measurement data was developed. The compression is done by isolating the scattering mechanisms on the target and recording their individual responses in the frequency and azimuth scans, respectively. The reconstruction, which is an inverse process of the compression, is granted by the sampling theorem. Two sets of data, the corner reflectors and the F-117 fighter model, were processed and the results were shown to be convincing. The compression ratio can be as large as several hundred, depending on the target's geometry and scattering characteristics
Viscoelastic model for the dynamic structure of binary systems
This paper presents the viscoelastic model for the Ashcroft-Langreth dynamic
structure factors of liquid binary mixtures. We also provide expressions for
the Bhatia-Thornton dynamic structure factors and, within these expressions,
show how the model reproduces both the dynamic and the self-dynamic structure
factors corresponding to a one-component system in the appropriate limits
(pseudobinary system or zero concentration of one component). In particular we
analyze the behavior of the concentration-concentration dynamic structure
factor and longitudinal current, and their corresponding counterparts in the
one-component limit, namely, the self dynamic structure factor and self
longitudinal current. The results for several lithium alloys with different
ordering tendencies are compared with computer simulations data, leading to a
good qualitative agreement, and showing the natural appearance in the model of
the fast sound phenomenon.Comment: 20 pages, 19 figures, submitted to PR
Stability Properties of Strongly Magnetized Spine Sheath Relativistic Jets
The linearized relativistic magnetohydrodynamic (RMHD) equations describing a
uniform axially magnetized cylindrical relativistic jet spine embedded in a
uniform axially magnetized relativistically moving sheath are derived. The
displacement current is retained in the equations so that effects associated
with Alfven wave propagation near light speed can be studied. A dispersion
relation for the normal modes is obtained. Analytical solutions for the normal
modes in the low and high frequency limits are found and a general stability
condition is determined. A trans-Alfvenic and even a super-Alfvenic
relativistic jet spine can be stable to velocity shear driven Kelvin-Helmholtz
modes. The resonance condition for maximum growth of the normal modes is
obtained in the kinetically and magnetically dominated regimes. Numerical
solution of the dispersion relation verifies the analytical solutions and is
used to study the regime of high sound and Alfven speeds.Comment: 42 pages includes 7 figures, to appear in Ap
Numerical Study of the Spin Hall Conductance in the Luttinger Model
We present first numerical studies of the disorder effect on the recently
proposed intrinsic spin Hall conductance in a three dimensional (3D) lattice
Luttinger model. The results show that the spin Hall conductance remains finite
in a wide range of disorder strength, with large fluctuations. The
disorder-configuration-averaged spin Hall conductance monotonically decreases
with the increase of disorder strength and vanishes before the Anderson
localization takes place. The finite-size effect is also discussed.Comment: 4 pages, 4 figures; the final version appearing in PR
- …
