1,096 research outputs found

    The Influence of l- and dl-Tryptophane and Kynurenic Acid Administration on Bile Volume and Composition

    Get PDF
    We have undertaken to determine whether kynurenic acid production or excretion in the bile (as reported by Kotake and Ichihara) might be responsible, at least in part, for the choleretic effect of tryptophane. We have also studied the influence of optical configuration of tryptophane on bile volume and on bile salt output, both of which Whipple and Smith found were increased by l-tryptophane administration

    Performance of AAOmega: the AAT multi-purpose fibre-fed spectrograph

    Full text link
    AAOmega is the new spectrograph for the 2dF fibre-positioning system on the Anglo-Australian Telescope. It is a bench-mounted, double-beamed design, using volume phase holographic (VPH) gratings and articulating cameras. It is fed by 392 fibres from either of the two 2dF field plates, or by the 512 fibre SPIRAL integral field unit (IFU) at Cassegrain focus. Wavelength coverage is 370 to 950nm and spectral resolution 1,000-8,000 in multi-Object mode, or 1,500-10,000 in IFU mode. Multi-object mode was commissioned in January 2006 and the IFU system will be commissioned in June 2006. The spectrograph is located off the telescope in a thermally isolated room and the 2dF fibres have been replaced by new 38m broadband fibres. Despite the increased fibre length, we have achieved a large increase in throughput by use of VPH gratings, more efficient coatings and new detectors - amounting to a factor of at least 2 in the red. The number of spectral resolution elements and the maximum resolution are both more than doubled, and the stability is an order of magnitude better. The spectrograph comprises: an f/3.15 Schmidt collimator, incorporating a dichroic beam-splitter; interchangeable VPH gratings; and articulating red and blue f/1.3 Schmidt cameras. Pupil size is 190mm, determined by the competing demands of cost, obstruction losses, and maximum resolution. A full suite of VPH gratings has been provided to cover resolutions 1,000 to 7,500, and up to 10,000 at particular wavelengths.Comment: 13 pages, 4 figures; presented at SPIE, Astronomical Telescopes and Instrumentation, 24 - 31 May 2006, Orlando, Florida US

    Recovering 6D Object Pose: A Review and Multi-modal Analysis

    Full text link
    A large number of studies analyse object detection and pose estimation at visual level in 2D, discussing the effects of challenges such as occlusion, clutter, texture, etc., on the performances of the methods, which work in the context of RGB modality. Interpreting the depth data, the study in this paper presents thorough multi-modal analyses. It discusses the above-mentioned challenges for full 6D object pose estimation in RGB-D images comparing the performances of several 6D detectors in order to answer the following questions: What is the current position of the computer vision community for maintaining "automation" in robotic manipulation? What next steps should the community take for improving "autonomy" in robotics while handling objects? Our findings include: (i) reasonably accurate results are obtained on textured-objects at varying viewpoints with cluttered backgrounds. (ii) Heavy existence of occlusion and clutter severely affects the detectors, and similar-looking distractors is the biggest challenge in recovering instances' 6D. (iii) Template-based methods and random forest-based learning algorithms underlie object detection and 6D pose estimation. Recent paradigm is to learn deep discriminative feature representations and to adopt CNNs taking RGB images as input. (iv) Depending on the availability of large-scale 6D annotated depth datasets, feature representations can be learnt on these datasets, and then the learnt representations can be customized for the 6D problem

    Nonpoint pollution of surface waters with phosphorus and nitrogen

    Get PDF
    Agriculture and urban activities are major sources of phosphorus and nitrogen to aquatic ecosystems. Atmospheric deposition further contributes as a source of N. These nonpoint inputs of nutrients are difficult to measure and regulate because they derive from activities dispersed over wide areas of land and are variable in time due to effects of weather. In aquatic ecosystems, these nutrients cause diverse problems such as toxic algal blooms, loss of oxygen, fish kills, loss of biodiversity (including species important for commerce and recreation), loss of aquatic plant beds and coral reefs, and other problems. Nutrient enrichment seriously degrades aquatic ecosystems and impairs the use of water for drinking, industry, agriculture, recreation, and other purposes. Based on our review of the scientific literature, we are certain that (1) eutrophication is a widespread problem in rivers, lakes, estuaries, and coastal oceans, caused by overenrichment with P and N; (2) nonpoint pollution, a major source of P and N to surface waters of the United States, results primarily from agriculture and urban activity, including industry; (3) inputs of P and N to agriculture in the form of fertilizers exceed outputs in produce in the United States and many other nations; (4) nutrient flows to aquatic ecosystems are directly related to animal stocking densities, and under high livestock densities, manure production exceeds the needs of crops to which the manure is applied; (5) excess fertilization and manure production cause a P surplus to accumulate in soil, some of which is transported to aquatic ecosystems; and (6) excess fertilization and manure production on agricultural lands create surplus N, which is mobile in many soils and often leaches to downstream aquatic ecosystems, and which can also volatilize to the atmosphere, redepositing elsewhere and eventually reaching aquatic ecosystems. If current practices continue, nonpoint pollution of surface waters is virtually certain to increase in the future. Such an outcome is not inevitable, however, because a number of technologies, land use practices, and conservation measures are capable of decreasing the flow of nonpoint P and N into surface waters. From our review of the available scientific information, we are confident that: (1) nonpoint pollution of surface waters with P and N could be reduced by reducing surplus nutrient flows in agricultural systems and processes, reducing agricultural and urban runoff by diverse methods, and reducing N emissions from fossil fuel burning; and (2) eutrophication can be reversed by decreasing input rates of P and N to aquatic ecosystems, but rates of recovery are highly variable among water bodies. Often, the eutrophic state is persistent, and recovery is slow
    • …
    corecore