30 research outputs found

    Role of the CCAAT-Binding Protein NFY in SCA17 Pathogenesis

    Get PDF
    Spinocerebellar ataxia 17 (SCA17) is caused by expansion of the polyglutamine (polyQ) tract in human TATA-box binding protein (TBP) that is ubiquitously expressed in both central nervous system and peripheral tissues. The spectrum of SCA17 clinical presentation is broad. The precise pathogenic mechanism in SCA17 remains unclear. Previously proteomics study using a cellular model of SCA17 has revealed reduced expression of heat shock 70 kDa protein 5 (HSPA5) and heat shock 70 kDa protein 8 (HSPA8), suggesting that impaired protein folding may contribute to the cell dysfunction of SCA17 (Lee et al., 2009). In lymphoblastoid cells, HSPA5 and HSPA8 expression levels in cells with mutant TBP were also significantly lower than that of the control cells (Chen et al., 2010). As nuclear transcription factor Y (NFY) has been reported to regulate HSPA5 transcription, we focused on if NFY activity and HSPA5 expression in SCA17 cells are altered. Here, we show that TBP interacts with NFY subunit A (NFYA) in HEK-293 cells and NFYA incorporated into mutant TBP aggregates. In both HEK-293 and SH-SY5Y cells expressing TBP/Q61∼79, the level of soluble NFYA was significantly reduced. In vitro binding assay revealed that the interaction between TBP and NFYA is direct. HSPA5 luciferase reporter assay and endogenous HSPA5 expression analysis in NFYA cDNA and siRNA transfection cells further clarified the important role of NFYA in regulating HSPA5 transcription. In SCA17 cells, HSPA5 promoter activity was activated as a compensatory response before aggregate formation. NFYA dysfunction was indicated in SCA17 cells as HSPA5 promoter activity reduced along with TBP aggregate formation. Because essential roles of HSPA5 in protection from neuronal apoptosis have been shown in a mouse model, NFYA could be a target of mutant TBP in SCA17

    Increased Prothrombin, Apolipoprotein A-IV, and Haptoglobin in the Cerebrospinal Fluid of Patients with Huntington's Disease

    Get PDF
    Huntington's disease (HD) is a progressive neurodegenerative disease caused by an unstable CAG trinucleotide repeat expansion. The need for biomarkers of onset and progression in HD is imperative, since currently reliable outcome measures are lacking. We used two-dimensional electrophoresis and mass spectrometry to analyze the proteome profiles in cerebrospinal fluid (CSF) of 6 pairs of HD patients and controls. Prothrombin, apolipoprotein A-IV (Apo A-IV) and haptoglobin were elevated in CSF of the HD patients in comparison with the controls. We used western blot as a semi-quantified measurement for prothrombin and Apo A-IV, as well as enzyme linked immunosorbent assay (ELISA) for measurement of haptoglobin, in 9 HD patients and 9 controls. The albumin quotient (Qalb), a marker of blood-brain barrier (BBB) function, was not different between the HD patients and the controls. The ratios of CSF prothrombin/albumin (prothrombin/Alb) and Apo A-IV/albumin (Apo A-IV/Alb), and haptoglobin level were significantly elevated in HD. The ratio of CSF prothrombin/Alb significantly correlated with the disease severity assessed by Unified Huntington's Disease Rating Scale (UHDRS). The results implicate that increased CSF prothrombin, Apo A-IV, and haptoglobin may be involved in pathogenesis of HD and may serve as potential biomarkers for HD

    Identification of Gene Networks and Pathways Associated with Guillain-Barré Syndrome

    Get PDF
    BACKGROUND: The underlying change of gene network expression of Guillain-Barré syndrome (GBS) remains elusive. We sought to identify GBS-associated gene networks and signaling pathways by analyzing the transcriptional profile of leukocytes in the patients with GBS. METHODS AND FINDINGS: Quantitative global gene expression microarray analysis of peripheral blood leukocytes was performed on 7 patients with GBS and 7 healthy controls. Gene expression profiles were compared between patients and controls after standardization. The set of genes that significantly correlated with GBS was further analyzed by Ingenuity Pathways Analyses. 256 genes and 18 gene networks were significantly associated with GBS (fold change ≥2, P<0.05). FOS, PTGS2, HMGB2 and MMP9 are the top four of 246 significantly up-regulated genes. The most significant disease and altered biological function genes associated with GBS were those involved in inflammatory response, infectious disease, and respiratory disease. Cell death, cellular development and cellular movement were the top significant molecular and cellular functions involved in GBS. Hematological system development and function, immune cell trafficking and organismal survival were the most significant GBS-associated function in physiological development and system category. Several hub genes, such as MMP9, PTGS2 and CREB1 were identified in the associated gene networks. Canonical pathway analysis showed that GnRH, corticotrophin-releasing hormone and ERK/MAPK signaling were the most significant pathways in the up-regulated gene set in GBS. CONCLUSIONS: This study reveals the gene networks and canonical pathways associated with GBS. These data provide not only networks between the genes for understanding the pathogenic properties of GBS but also map significant pathways for the future development of novel therapeutic strategies

    Crosstalk between reactive oxygen species and pro-inflammatory markers in developing various chronic diseases: a review

    Get PDF
    The inflammation process in the human body plays a central role in the pathogenesis of many chronic diseases. In addition, reactive oxygen species (ROS) exert potentially a decisive role in human body, particularly in physiological and pathological process. The chronic inflammation state could generate several types of diseases such as cancer, atherosclerosis, diabetes mellitus and arthritis, especially if it is concomitant with high levels of pro-inflammatory markers and ROS. The respiratory burst of inflammatory cells during inflammation increases the production and accumulation of ROS. However, ROS regulate various types of kinases and transcription factors such nuclear factor-kappa B which is related to the activation of pro-inflammatory genes. The exact crosstalk between pro-inflammatory markers and ROS in terms of pathogenesis and development of serious diseases is still ambitious. Many studies have been attempting to determine the mechanistic mutual relationship between ROS and pro-inflammatory markers. Therefore hereby, we review the hypothetical relationship between ROS and pro-inflammatory markers in which they have been proposed to initiate cancer, atherosclerosis, diabetes mellitus and arthritis

    SEQUENTIAL METHODS FOR COMPARATIVE EFFECTIVENESS EXPERIMENTS: POINT OF CARE CLINICAL TRIALS

    No full text
    Abstract: The goal of comparative effectiveness research (CER) is to support evidence-based choices of treatments. Currently the majority of randomized trials for CER are designed to demonstrate superiority, which often require large sample size because the effect sizes between treatments in current use are typically small to moderate and there are usually more than two treatments to be compared. We propose an alternative group sequential design for such setting. Instead of testing superiority, we aim to select high quality treatments that are within a small distance from the best treatment. The basic idea is to eliminate non-promising treatments at interim analyses that cannot be much better than the currently observed best treatment, based on generalized likelihood ratio tests. This approach can also be used for guideline implementation and for phase II selection trials
    corecore