6,657 research outputs found

    Development of a usability evaluation method using natural product-use motion

    Get PDF
    The present study developed and tested a new usability evaluation method which considers natural product-use motions. The proposed method measures both natural product-use motions (NMs) and actual product-use motions (AMs) for a product using an optical motion capture system and examines the usability of the product based on motion similarity (MS; %) between NMs and AMs. The proposed method was applied to a usability test of four vacuum cleaners (A, B, C, and D) with 15 participants and their MSs were compared with EMG measurements and subjective discomfort ratings. Cleaners A (44.6%) and C (44.2%) showed higher MSs than cleaners B (42.9%) and D (41.7%); the MSs mostly corresponded to the EMG measurements, which could indicate that AMs deviated from NMs may increase muscular efforts. However, the MSs were slightly different from the corresponding discomfort ratings. The proposed method demonstrated its usefulness in usability testing, but further research is needed with various products to generalize its effectiveness. ? 2016 Elsevier Ltd113Nsciessciscopu

    Observation of spinor dynamics in optically trapped 87Rb Bose-Einstein Condensates

    Full text link
    We measure spin mixing of F=1 and F=2 spinor condensates of 87Rb atoms confined in an optical trap. We determine the spin mixing time to be typically less than 600 ms and observe spin population oscillations. The equilibrium spin configuration in the F=1 manifold is measured for different magnetic fields and found to show ferromagnetic behavior for low field gradients. An F=2 condensate is created by microwave excitation from F=1 manifold, and this spin-2 condensate is observed to decay exponentially with time constant 250 ms. Despite the short lifetime in the F=2 manifold, spin mixing of the condensate is observed within 50 ms.Comment: 4 pages, 6 figure

    The Case for Learned Index Structures

    Full text link
    Indexes are models: a B-Tree-Index can be seen as a model to map a key to the position of a record within a sorted array, a Hash-Index as a model to map a key to a position of a record within an unsorted array, and a BitMap-Index as a model to indicate if a data record exists or not. In this exploratory research paper, we start from this premise and posit that all existing index structures can be replaced with other types of models, including deep-learning models, which we term learned indexes. The key idea is that a model can learn the sort order or structure of lookup keys and use this signal to effectively predict the position or existence of records. We theoretically analyze under which conditions learned indexes outperform traditional index structures and describe the main challenges in designing learned index structures. Our initial results show, that by using neural nets we are able to outperform cache-optimized B-Trees by up to 70% in speed while saving an order-of-magnitude in memory over several real-world data sets. More importantly though, we believe that the idea of replacing core components of a data management system through learned models has far reaching implications for future systems designs and that this work just provides a glimpse of what might be possible

    Geometric quenching of orbital pair breaking in a single crystalline superconducting nanomesh network

    Get PDF
    In a superconductor Cooper pairs condense into a single state and in so doing support dissipation free charge flow and perfect diamagnetism. In a magnetic field the minimum kinetic energy of the Cooper pairs increases, producing an orbital pair breaking effect. We show that it is possible to significantly quench the orbital pair breaking effect for both parallel and perpendicular magnetic fields in a thin film superconductor with lateral nanostructure on a length scale smaller than the magnetic length. By growing an ultra-thin (2 nm thick) single crystalline Pb nanowire network, we establish nm scale lateral structure without introducing weak links. Our network suppresses orbital pair breaking for both perpendicular and in-plane fields with a negligible reduction in zero-field resistive critical temperatures. Our study opens a frontier in nanoscale superconductivity by providing a strategy for maintaining pairing in strong field environments in all directions with important technological implications

    Isostructural Phase Transition of TiN Under High Pressure

    Full text link
    In situ high-pressure energy dispersive x-ray diffraction experiments on polycrystalline powder TiN with NaCl-type structure have been conducted with the pressure up to 30.1 GPa by using the diamond anvil cell instrument with synchrotron radiation at room tempearture. The experimental results suggested that an isostructural phase transition might exist at about 7 GPa as revealed by the discontinuity of V/V0 with pressure.Comment: submitte

    Structural origin of the Jeff=1/2 antiferromagnetic phase in Ga-doped Sr2IrO4

    Full text link
    Sr2IrO4 hosts a novel Jeff =1/2 Mott state and quasi-two-dimensional antiferromagnetic order, providing a unique avenue of exploring emergent states of matter and functions that are extraordinarily sensitive to any structural variations. While the correlation between the physical property and lattice structure in Sr2IrO4 has been a focused issue in the past decade, a common perception assumes that the magnetic ordering is essentially determined by the Ir-O-Ir bond angle. Therefore, a delicate modulation of this angle and consequently a major modulation of the magnetic ordering, by chemical doping such as Ga at Ir site, has been extensively investigated and well believed. In this work, however, we present a whole package of structure and magnetism data on a series of single crystal and polycrystalline Sr2Ir1-xGaxO4 samples, revealing the substantial difference in the N\'eel temperature TN between the two types of samples, and the TN value for the polycrystalline sample x = 0.09 is even 64 K higher than that of the single crystal sample x = 0.09 (deltaTN ~ 64 K at x = 0.09). Our systematic investigations demonstrate the crucial role of the c/a ratio in tuning the interlayer coupling and thereby the Neel point TN, i.e. a higher TN can be achieved as c/a is reduced. The notable differences in structural parameters between the two groups of samples are probably caused by additional strain due to the massive grain boundaries in polycrystalline samples. The present work suggests an additional ingredient of physics that is essential in modulating the emergent properties in Sr2IrO4 and probably other iridates

    Platform effects on optical variability and prediction of underwater visibility

    Get PDF
    We present hydrographic and optical data collected concurrently from two different platforms, the R/P FLoating Instrument Platform and the R/V Kilo Moana, located about 2km apart in the Santa Barbara Channel in California. We show that optical variability between the two platforms was due primarily to platform effects, specifically the breakdown of stratification from mixing by the hull of R/P FLIP. Modeled underwater radiance distribution differed by as much as 50% between the two platforms during stratified conditions. We determine that the observed optical variability resulted in up to 57% differences in predicted horizontal visibility of a black target

    Mean-field Density Functional Theory of a Three-Phase Contact Line

    Full text link
    A three-phase contact line in a three-phase fluid system is modeled by a mean-field density functional theory. We use a variational approach to find the Euler-Lagrange equations. Analytic solutions are obtained in the two-phase regions at large distances from the contact line. We employ a triangular grid and use a successive over-relaxation method to find numerical solutions in the entire domain for the special case of equal interfacial tensions for the two-phase interfaces. We use the Kerins-Boiteux formula to obtain a line tension associated with the contact line. This line tension turns out to be negative. We associate line adsorption with the change of line tension as the governing potentials change.Comment: 14 pages, 13 figures, submitted to PR

    A New Method to Improve Accuracy of Leakage Current Estimation for Transistors with Non-Rectangular Gates due to Sub-wavelength Lithography Effects

    Get PDF
    Abstract−Non-ideal pattern transfer from drawn circuit layout to manufactured nanometer transistors can severely affect electrical characteristics such as drive current, leakage current, and threshold voltage. Obtaining accurate electrical models of non-rectangular transistors due to sub-wavelength lithography effects is indispensable for DFM-aware nanometer IC design. In this paper, TCAD device simulations are utilized to quantify the accuracy of a standard equivalent gate length extraction approach for non-rectangular transistors. It is verified that threshold voltage and current density are non-uniform along the channel width due to narrow-width related edge effects, leading to significant inaccuracy in the sub-threshold region. A new EGL extraction method utilizing location-dependent weighting factors and convex parameter extraction techniques is proposed to account for the current density non-uniformity. Preliminary results verified by TCAD simulations indicate that the accuracy of leakage current estimation for non-rectangular transistors can be significantly improved. The method is readily applicable to calibration with real silicon data

    Evolution of electron temperature in inductively coupled plasma

    Get PDF
    It is generally recognized that the electron temperature T_e either remains constant or decreases slightly with plasma power (plasma density). This trend can be simply verified using a single-step or multi-step fluid global model. In this work, however, we experimentally observed that T_e evolved with plasma power in radio frequency (RF) inductively coupled plasmas. In this experiment, the measured electron energy distributions were nearly Maxwellian distribution. In the low RF power regime, T_e decreased with increasing plasma power, while it increased with plasma power in the high RF power regime. This evolution of T_e could be understood by considering the coupling effect between neutral gas heating and stepwise ionization. Measurement of gas temperature via laser Rayleigh scattering and calculation of T_e using the kinetic model, considering both multi-step ionization and gas heating, were in good agreement with the measured value of T_e. This result shows that T_e is in a stronger dependence on the plasma power
    corecore