2,091 research outputs found

    Deconstruction and other approaches to supersymmetric lattice field theories

    Full text link
    This report contains both a review of recent approaches to supersymmetric lattice field theories and some new results on the deconstruction approach. The essential reason for the complex phase problem of the fermion determinant is shown to be derivative interactions that are not present in the continuum. These irrelevant operators violate the self-conjugacy of the fermion action that is present in the continuum. It is explained why this complex phase problem does not disappear in the continuum limit. The fermion determinant suppression of various branches of the classical moduli space is explored, and found to be supportive of previous claims regarding the continuum limit.Comment: 70 page

    Deformed matrix models, supersymmetric lattice twists and N=1/4 supersymmetry

    Get PDF
    A manifestly supersymmetric nonperturbative matrix regularization for a twisted version of N=(8,8) theory on a curved background (a two-sphere) is constructed. Both continuum and the matrix regularization respect four exact scalar supersymmetries under a twisted version of the supersymmetry algebra. We then discuss a succinct Q=1 deformed matrix model regularization of N=4 SYM in d=4, which is equivalent to a non-commutative A4A_4^* orbifold lattice formulation. Motivated by recent progress in supersymmetric lattices, we also propose a N=1/4 supersymmetry preserving deformation of N=4 SYM theory on R4\R^4. In this class of N=1/4 theories, both the regularized and continuum theory respect the same set of (scalar) supersymmetry. By using the equivalence of the deformed matrix models with the lattice formulations, we give a very simple physical argument on why the exact lattice supersymmetry must be a subset of scalar subalgebra. This argument disagrees with the recent claims of the link approach, for which we give a new interpretation.Comment: 47 pages, 3 figure

    A lattice study of the two-dimensional Wess Zumino model

    Get PDF
    We present results from a numerical simulation of the two-dimensional Euclidean Wess-Zumino model. In the continuum the theory possesses N=1 supersymmetry. The lattice model we employ was analyzed by Golterman and Petcher in \cite{susy} where a perturbative proof was given that the continuum supersymmetric Ward identities are recovered without finite tuning in the limit of vanishing lattice spacing. Our simulations demonstrate the existence of important non-perturbative effects in finite volumes which modify these conclusions. It appears that in certain regions of parameter space the vacuum state can contain solitons corresponding to field configurations which interpolate between different classical vacua. In the background of these solitons supersymmetry is partially broken and a light fermion mode is observed. At fixed coupling the critical mass separating phases of broken and unbroken supersymmetry appears to be volume dependent. We discuss the implications of our results for continuum supersymmetry breaking.Comment: 32 pages, 12 figure

    Scaling in Steiner Random Surfaces

    Full text link
    It has been suggested that the modified Steiner action functional has desirable properties for a random surface action. In this paper we investigate the scaling of the string tension and massgap in a variant of this action on dynamically triangulated random surfaces and compare the results with the gaussian plus extrinsic curvature actions that have been used previously.Comment: 7 pages, COLO-HEP-32

    Collapsing transition of spherical tethered surfaces with many holes

    Full text link
    We investigate a tethered (i.e. fixed connectivity) surface model on spherical surfaces with many holes by using the canonical Monte Carlo simulations. Our result in this paper reveals that the model has only a collapsing transition at finite bending rigidity, where no surface fluctuation transition can be seen. The first-order collapsing transition separates the smooth phase from the collapsed phase. Both smooth and collapsed phases are characterized by Hausdorff dimension H\simeq 2, consequently, the surface becomes smooth in both phases. The difference between these two phases can be seen only in the size of surface. This is consistent with the fact that we can see no surface fluctuation transition at the collapsing transition point. These two types of transitions are well known to occur at the same transition point in the conventional surface models defined on the fixed connectivity surfaces without holes.Comment: 7 pages with 11 figure

    In-plane deformation of a triangulated surface model with metric degrees of freedom

    Full text link
    Using the canonical Monte Carlo simulation technique, we study a Regge calculus model on triangulated spherical surfaces. The discrete model is statistical mechanically defined with the variables XX, gg and ρ\rho, which denote the surface position in R3{\bf R}^3, the metric on a two-dimensional surface MM and the surface density of MM, respectively. The metric gg is defined only by using the deficit angle of the triangles in {MM}. This is in sharp contrast to the conventional Regge calculus model, where {gg} depends only on the edge length of the triangles. We find that the discrete model in this paper undergoes a phase transition between the smooth spherical phase at btoinftyb to infty and the crumpled phase at bto0b to 0, where bb is the bending rigidity. The transition is of first-order and identified with the one observed in the conventional model without the variables gg and ρ\rho. This implies that the shape transformation transition is not influenced by the metric degrees of freedom. It is also found that the model undergoes a continuous transition of in-plane deformation. This continuous transition is reflected in almost discontinuous changes of the surface area of MM and that of X(M)X(M), where the surface area of MM is conjugate to the density variable ρ\rho.Comment: 13 pages, 7 figure

    Absence of sign problem in two-dimensional N=(2,2) super Yang-Mills on lattice

    Full text link
    We show that N=(2,2) SU(N) super Yang-Mills theory on lattice does not have sign problem in the continuum limit, that is, under the phase-quenched simulation phase of the determinant localizes to 1 and hence the phase-quench approximation becomes exact. Among several formulations, we study models by Cohen-Kaplan-Katz-Unsal (CKKU) and by Sugino. We confirm that the sign problem is absent in both models and that they converge to the identical continuum limit without fine tuning. We provide a simple explanation why previous works by other authors, which claim an existence of the sign problem, do not capture the continuum physics.Comment: 27 pages, 24 figures; v2: comments and references added; v3: figures on U(1) mass independence and references added, to appear in JHE

    Exact Lattice Supersymmetry: the Two-Dimensional N=2 Wess-Zumino Model

    Get PDF
    We study the two-dimensional Wess-Zumino model with extended N=2 supersymmetry on the lattice. The lattice prescription we choose has the merit of preserving {\it exactly} a single supersymmetric invariance at finite lattice spacing aa. Furthermore, we construct three other transformations of the lattice fields under which the variation of the lattice action vanishes to O(ga2)O(ga^2) where gg is a typical interaction coupling. These four transformations correspond to the two Majorana supercharges of the continuum theory. We also derive lattice Ward identities corresponding to these exact and approximate symmetries. We use dynamical fermion simulations to check the equality of the massgaps in the boson and fermion sectors and to check the lattice Ward identities. At least for weak coupling we see no problems associated with a lack of reflection positivity in the lattice action and find good agreement with theory. At strong coupling we provide evidence that problems associated with a lack of reflection positivity are evaded for small enough lattice spacing.Comment: 29 pages, 10 figures. New results at strong coupling added. Minor corrections to text and one reference added. Version to appear in Phys. Rev.

    Phase transitions of a tethered surface model with a deficit angle term

    Full text link
    Nambu-Goto model is investigated by using the canonical Monte Carlo simulations on fixed connectivity surfaces of spherical topology. Three distinct phases are found: crumpled, tubular, and smooth. The crumpled and the tubular phases are smoothly connected, and the tubular and the smooth phases are connected by a discontinuous transition. The surface in the tubular phase forms an oblong and one-dimensional object similar to a one-dimensional linear subspace in the Euclidean three-dimensional space R^3. This indicates that the rotational symmetry inherent in the model is spontaneously broken in the tubular phase, and it is restored in the smooth and the crumpled phases.Comment: 6 pages with 6 figure
    corecore