440 research outputs found

    Surface Grafting of Poly(L-glutamates). 3. Block Copolymerization

    Get PDF
    This paper describes for the first time the synthesis of surface-grafted AB-block copolypeptides, consisting of poly(γ-benzyl L-glutamate) (PBLG) as the A-block and poly(γ-methyl L-glutamate) (PMLG) as the B-block. Immobilized primary amine groups of (γ-aminopropyl)triethoxysilane (APS) on silicon wafers initiated the ring-opening polymerization of N-carboxyanhydrides of glutamic acid esters (NCAs). After removal of the BLG-NCA monomer solution after a certain reaction time, the amine end groups of the formed PBLG blocks acted as initiators for the second monomers. This method provides the possibility of making layered structures of surface-grafted block copolymers with tuned properties. Ellipsometry and small-angle X-ray reflection (SAXR) measurements revealed the thickness of the polypeptide layers ranging from 45-100 Å of the first block to 140-270 Å for the total block copolypeptides. The chemical composition of the blocks was determined by X-ray photoelectron spectroscopy (XPS). In addition, Fourier transform infrared transmission spectroscopy (FT-IR) revealed that the polypeptide main chains of both blocks consisted of pure R-helices. The average orientation of the helices ranging from 22-42° with respect to the substrate within the first block to 31-35° in the second block could be derived with FT-IR as well.

    Sleep and Economic Status are Linked to Daily Life Stress in African-born Blacks Living in America.

    Full text link
    To identify determinants of daily life stress in Africans in America, 156 African-born Blacks (Age: 40 ± 10 years (mean ± SD), range 22-65 years) who came to the United States as adults (age ≥ 18 years) were asked about stress, sleep, behavior and socioeconomic status. Daily life stress and sleep quality were assessed with the Perceived Stress Scale (PSS) and Pittsburgh Sleep Quality Index (PSQI), respectively. High-stress was defined by the threshold of the upper quartile of population distribution of PSS (≥16) and low-stress as PSS \u3c 16. Poor sleep quality required PSQI \u3e 5. Low income was defined as groups, PSS were: 21 ± 4 versus 9 ± 4, p \u3c 0.001 and PSQI were: 6 ± 3 versus 4 ± 3, p \u3c 0.001, respectively. PSS and PSQI were correlated (r = 0.38, p \u3c 0.001). The odds of high-stress were higher among those with poor sleep quality (OR 5.11, 95% CI: 2.07, 12.62), low income (OR 5.03, 95% CI: 1.75, 14.47), and no health insurance (OR 3.01, 95% CI: 1.19, 8.56). Overall, in African-born Blacks living in America, daily life stress appears to be linked to poor quality sleep and exacerbated by low income and lack of health insurance

    First results from the JWST Early Release Science Program Q3D: Benchmark Comparison of Optical and Mid-IR Tracers of a Dusty, Ionized Red Quasar Wind at z=0.435

    Full text link
    The [OIII] 5007 A emission line is the most common tracer of warm, ionized outflows in active galactic nuclei across cosmic time. JWST newly allows us to use mid-infrared spectral features at both high spatial and spectral resolution to probe these same winds. Here we present a comparison of ground-based, seeing-limited [OIII] and space-based, diffraction-limited [SIV] 10.51 micron maps of the powerful, kpc-scale outflow in the Type 1 red quasar SDSS J110648.32+480712.3. The JWST data are from the Mid-InfraRed Instrument (MIRI). There is a close match in resolution between the datasets (0."4--0."6), in ionization potential of the O+2 and S+3 ions (35 eV), and in line sensitivity (1e-17 to 2e-17 erg/s/cm2/arcsec2). The [OIII] and [SIV] line shapes match in velocity and linewidth over much of the 20 kpc outflowing nebula, and [SIV] is the brightest line in the rest-frame 3.5--19.5 micron range, demonstrating its usefulness as a mid-IR probe of quasar outflows. [OIII] is nevertheless intriniscally brighter and provides better contrast with the point-source continuum, which is strong in the mid-IR. There is a strong anticorrelation of [OIII]/[SIV] with average velocity, which is consistent with a scenario of differential obscuration between the approaching (blueshifted) and receding (redshifted) sides of the flow. The dust in the wind may also obscure the central quasar, consistent with models that attribute red quasar extinction to dusty winds.Comment: Submitted to ApJ

    Targeting HSP90 for cancer therapy

    Get PDF
    Heat-shock proteins (HSPs) are molecular chaperones that regulate protein folding to ensure correct conformation and translocation and to avoid protein aggregation. Heat-shock proteins are increased in many solid tumours and haematological malignancies. Many oncogenic proteins responsible for the transformation of cells to cancerous forms are client proteins of HSP90. Targeting HSP90 with chemical inhibitors would degrade these oncogenic proteins, and thus serve as useful anticancer agents. This review provides an overview of the HSP chaperone machinery and the structure and function of HSP90. We also highlight the key oncogenic proteins that are regulated by HSP90 and describe how inhibition of HSP90 could alter the activity of multiple signalling proteins, receptors and transcriptional factors implicated in carcinogenesis

    Heat shock protein-90-alpha, a prolactin-STAT5 target gene identified in breast cancer cells, is involved in apoptosis regulation

    Get PDF
    Introduction The prolactin-Janus-kinase-2-signal transducer and activator of transcription-5 (JAK2-STAT5) pathway is essential for the development and functional differentiation of the mammary gland. The pathway also has important roles in mammary tumourigenesis. Prolactin regulated target genes are not yet well defined in tumour cells, and we undertook, to the best of our knowledge, the first large genetic screen of breast cancer cells treated with or without exogenous prolactin. We hypothesise that the identification of these genes should yield insights into the mechanisms by which prolactin participates in cancer formation or progression, and possibly how it regulates normal mammary gland development. Methods We used subtractive hybridisation to identify a number of prolactin-regulated genes in the human mammary carcinoma cell line SKBR3. Northern blotting analysis and luciferase assays identified the gene encoding heat shock protein 90-alpha (HSP90A) as a prolactin-JAK2-STAT5 target gene, whose function was characterised using apoptosis assays. Results We identified a number of new prolactin-regulated genes in breast cancer cells. Focusing on HSP90A, we determined that prolactin increased HSP90A mRNA in cancerous human breast SKBR3 cells and that STAT5B preferentially activated the HSP90A promoter in reporter gene assays. Both prolactin and its downstream protein effector, HSP90α, promote survival, as shown by apoptosis assays and by the addition of the HSP90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), in both untransformed HC11 mammary epithelial cells and SKBR3 breast cancer cells. The constitutive expression of HSP90A, however, sensitised differentiated HC11 cells to starvation-induced wild-type p53-independent apoptosis. Interestingly, in SKBR3 breast cancer cells, HSP90α promoted survival in the presence of serum but appeared to have little effect during starvation. Conclusions In addition to identifying new prolactin-regulated genes in breast cancer cells, we found that prolactin-JAK2-STAT5 induces expression of the HSP90A gene, which encodes the master chaperone of cancer. This identifies one mechanism by which prolactin contributes to breast cancer. Increased expression of HSP90A in breast cancer is correlated with increased cell survival and poor prognosis and HSP90α inhibitors are being tested in clinical trials as a breast cancer treatment. Our results also indicate that HSP90α promotes survival depending on the cellular conditions and state of cellular transformation

    Hsp90 Inhibition Decreases Mitochondrial Protein Turnover

    Get PDF
    Cells treated with hsp90 inhibitors exhibit pleiotropic changes, including an expansion of the mitochondrial compartment, accompanied by mitochondrial fragmentation and condensed mitochondrial morphology, with ultimate compromise of mitochondrial integrity and apoptosis.We identified several mitochondrial oxidative phosphorylation complex subunits, including several encoded by mtDNA, that are upregulated by hsp90 inhibitors, without corresponding changes in mRNA abundance. Post-transcriptional accumulation of mitochondrial proteins observed with hsp90 inhibitors is also seen in cells treated with proteasome inhibitors. Detailed studies of the OSCP subunit of mitochondrial F1F0-ATPase revealed the presence of mono- and polyubiquitinated OSCP in mitochondrial fractions. We demonstrate that processed OSCP undergoes retrotranslocation to a trypsin-sensitive form associated with the outer mitochondrial membrane. Inhibition of proteasome or hsp90 function results in accumulation of both correctly targeted and retrotranslocated mitochondrial OSCP.Cytosolic turnover of mitochondrial proteins demonstrates a novel connection between mitochondrial and cytosolic compartments through the ubiquitin-proteasome system. Analogous to defective protein folding in the endoplasmic reticulum, a mitochondrial unfolded protein response may play a role in the apoptotic effects of hsp90 and proteasome inhibitors
    corecore