2,939 research outputs found

    Exponential Renormalization II: Bogoliubov's R-operation and momentum subtraction schemes

    Full text link
    This article aims at advancing the recently introduced exponential method for renormalisation in perturbative quantum field theory. It is shown that this new procedure provides a meaningful recursive scheme in the context of the algebraic and group theoretical approach to renormalisation. In particular, we describe in detail a Hopf algebraic formulation of Bogoliubov's classical R-operation and counterterm recursion in the context of momentum subtraction schemes. This approach allows us to propose an algebraic classification of different subtraction schemes. Our results shed light on the peculiar algebraic role played by the degrees of Taylor jet expansions, especially the notion of minimal subtraction and oversubtractions.Comment: revised versio

    On the Exponentials of Some Structured Matrices

    Full text link
    In this note explicit algorithms for calculating the exponentials of important structured 4 x 4 matrices are provided. These lead to closed form formulae for these exponentials. The techniques rely on one particular Clifford Algebra isomorphism and basic Lie theory. When used in conjunction with structure preserving similarities, such as Givens rotations, these techniques extend to dimensions bigger than four.Comment: 19 page

    Reciprocal relativity of noninertial frames: quantum mechanics

    Full text link
    Noninertial transformations on time-position-momentum-energy space {t,q,p,e} with invariant Born-Green metric ds^2=-dt^2+dq^2/c^2+(1/b^2)(dp^2-de^2/c^2) and the symplectic metric -de/\dt+dp/\dq are studied. This U(1,3) group of transformations contains the Lorentz group as the inertial special case. In the limit of small forces and velocities, it reduces to the expected Hamilton transformations leaving invariant the symplectic metric and the nonrelativistic line element ds^2=dt^2. The U(1,3) transformations bound relative velocities by c and relative forces by b. Spacetime is no longer an invariant subspace but is relative to noninertial observer frames. Born was lead to the metric by a concept of reciprocity between position and momentum degrees of freedom and for this reason we call this reciprocal relativity. For large b, such effects will almost certainly only manifest in a quantum regime. Wigner showed that special relativistic quantum mechanics follows from the projective representations of the inhomogeneous Lorentz group. Projective representations of a Lie group are equivalent to the unitary reprentations of its central extension. The same method of projective representations of the inhomogeneous U(1,3) group is used to define the quantum theory in the noninertial case. The central extension of the inhomogeneous U(1,3) group is the cover of the quaplectic group Q(1,3)=U(1,3)*s H(4). H(4) is the Weyl-Heisenberg group. A set of second order wave equations results from the representations of the Casimir operators

    Quantising on a category

    Full text link
    We review the problem of finding a general framework within which one can construct quantum theories of non-standard models for space, or space-time. The starting point is the observation that entities of this type can typically be regarded as objects in a category whose arrows are structure-preserving maps. This motivates investigating the general problem of quantising a system whose `configuration space' (or history-theory analogue) is the set of objects \Ob\Q in a category \Q. We develop a scheme based on constructing an analogue of the group that is used in the canonical quantisation of a system whose configuration space is a manifold QG/HQ\simeq G/H, where GG and HH are Lie groups. In particular, we choose as the analogue of GG the monoid of `arrow fields' on \Q. Physically, this means that an arrow between two objects in the category is viewed as an analogue of momentum. After finding the `category quantisation monoid', we show how suitable representations can be constructed using a bundle (or, more precisely, presheaf) of Hilbert spaces over \Ob\Q. For the example of a category of finite sets, we construct an explicit representation structure of this type.Comment: To appear in a volume dedicated to the memory of James Cushin

    Positive-Operator-Valued Time Observable in Quantum Mechanics

    Full text link
    We examine the longstanding problem of introducing a time observable in Quantum Mechanics; using the formalism of positive-operator-valued measures we show how to define such an observable in a natural way and we discuss some consequences.Comment: 13 pages, LaTeX, no figures. Some minor changes, expanded the bibliography (now it is bigger than the one in the published version), changed the title and the style for publication on the International Journal of Theoretical Physic

    Projective Fourier Duality and Weyl Quantization

    Full text link
    The Weyl-Wigner correspondence prescription, which makes large use of Fourier duality, is reexamined from the point of view of Kac algebras, the most general background for noncommutative Fourier analysis allowing for that property. It is shown how the standard Kac structure has to be extended in order to accommodate the physical requirements. An Abelian and a symmetric projective Kac algebras are shown to provide, in close parallel to the standard case, a new dual framework and a well-defined notion of projective Fourier duality for the group of translations on the plane. The Weyl formula arises naturally as an irreducible component of the duality mapping between these projective algebras.Comment: LaTeX 2.09 with NFSS or AMSLaTeX 1.1. 102Kb, 44 pages, no figures. requires subeqnarray.sty, amssymb.sty, amsfonts.sty. Final version with text improvements and crucial typos correction

    Fourier Duality as a Quantization Principle

    Full text link
    The Weyl-Wigner prescription for quantization on Euclidean phase spaces makes essential use of Fourier duality. The extension of this property to more general phase spaces requires the use of Kac algebras, which provide the necessary background for the implementation of Fourier duality on general locally compact groups. Kac algebras -- and the duality they incorporate -- are consequently examined as candidates for a general quantization framework extending the usual formalism. Using as a test case the simplest non-trivial phase space, the half-plane, it is shown how the structures present in the complete-plane case must be modified. Traces, for example, must be replaced by their noncommutative generalizations - weights - and the correspondence embodied in the Weyl-Wigner formalism is no more complete. Provided the underlying algebraic structure is suitably adapted to each case, Fourier duality is shown to be indeed a very powerful guide to the quantization of general physical systems.Comment: LaTeX 2.09 with NFSS or AMSLaTeX 1.1. 97Kb, 43 pages, no figures. requires subeqnarray.sty, amssymb.sty, amsfonts.sty. Final version with (few) text and (crucial) typos correction

    Strong nonlocality: A trade-off between states and measurements

    Full text link
    Measurements on entangled quantum states can produce outcomes that are nonlocally correlated. But according to Tsirelson's theorem, there is a quantitative limit on quantum nonlocality. It is interesting to explore what would happen if Tsirelson's bound were violated. To this end, we consider a model that allows arbitrary nonlocal correlations, colloquially referred to as "box world". We show that while box world allows more highly entangled states than quantum theory, measurements in box world are rather limited. As a consequence there is no entanglement swapping, teleportation or dense coding.Comment: 11 pages, 2 figures, very minor change

    The Physical Origins of Entropy Production, Free Energy Dissipation and their Mathematical Representations

    Full text link
    A complete mathematical theory of nonequilibrium thermodynamics of stochastic systems in terms of master equations is presented. As generalizations of isothermal entropy and free energy, two functions of states play central roles: the Gibbs entropy SS and the relative entropy FF, which are related via the stationary distribution of the stochastic dynamics. SS satisfies the fundamental entropy balance equation dS/dt=ephd/TdS/dt=e_p-h_d/T with entropy production rate ep0e_p\ge 0 and heat dissipation rate hdh_d, while dF/dt=fd0dF/dt=-f_d\le 0. For closed systems that satisfy detailed balance: Tep(t)=fd(t)Te_p(t)=f_d(t). For open system one has Tep(t)=fd(t)+Qhk(t)Te_p(t)=f_d(t)+Q_{hk}(t) where the housekeeping heat Qhk0Q_{hk}\ge 0 was first introduced in the phenomenological nonequilibrium steady state thermodynamics. Entropy production epe_p consists of free energy dissipation associated with spontaneous relaxation, fdf_d, and active energy pumping that sustains the open system QhkQ_{hk}. The amount of excess heat involved in the relaxation Qex=hdQhk=fdT(dS/dt)Q_{ex}=h_d-Q_{hk} = f_d-T(dS/dt).Comment: 4 pages, no figure

    Rare Events and Scale--Invariant Dynamics of Perturbations in Delayed Dynamical Systems

    Get PDF
    We study the dynamics of perturbations in time delayed dynamical systems. Using a suitable space-time coordinate transformation, we find that the time evolution of the linearized perturbations (Lyapunov vector) can be mapped to the linear Zhang surface growth model [Y.-C. Zhang, J. Phys. France {\bf 51}, 2129 (1990)], which is known to describe surface roughening driven by power-law distributed noise. As a consequence, Lyapunov vector dynamics is dominated by rare random events that lead to non-Gaussian fluctuations and multiscaling properties.Comment: Final version to appear in Phys. Rev. Lett., 4 pages, 3 eps fig
    corecore