879 research outputs found
Nonnormal amplification in random balanced neuronal networks
In dynamical models of cortical networks, the recurrent connectivity can
amplify the input given to the network in two distinct ways. One is induced by
the presence of near-critical eigenvalues in the connectivity matrix W,
producing large but slow activity fluctuations along the corresponding
eigenvectors (dynamical slowing). The other relies on W being nonnormal, which
allows the network activity to make large but fast excursions along specific
directions. Here we investigate the tradeoff between nonnormal amplification
and dynamical slowing in the spontaneous activity of large random neuronal
networks composed of excitatory and inhibitory neurons. We use a Schur
decomposition of W to separate the two amplification mechanisms. Assuming
linear stochastic dynamics, we derive an exact expression for the expected
amount of purely nonnormal amplification. We find that amplification is very
limited if dynamical slowing must be kept weak. We conclude that, to achieve
strong transient amplification with little slowing, the connectivity must be
structured. We show that unidirectional connections between neurons of the same
type together with reciprocal connections between neurons of different types,
allow for amplification already in the fast dynamical regime. Finally, our
results also shed light on the differences between balanced networks in which
inhibition exactly cancels excitation, and those where inhibition dominates.Comment: 13 pages, 7 figure
Extracting non-linear integrate-and-fire models from experimental data using dynamic I–V curves
The dynamic I–V curve method was recently introduced for the efficient experimental generation of reduced neuron models. The method extracts the response properties of a neuron while it is subject to a naturalistic stimulus that mimics in vivo-like fluctuating synaptic drive. The resulting history-dependent, transmembrane current is then projected onto a one-dimensional current–voltage relation that provides the basis for a tractable non-linear integrate-and-fire model. An attractive feature of the method is that it can be used in spike-triggered mode to quantify the distinct patterns of post-spike refractoriness seen in different classes of cortical neuron. The method is first illustrated using a conductance-based model and is then applied experimentally to generate reduced models of cortical layer-5 pyramidal cells and interneurons, in injected-current and injected- conductance protocols. The resulting low-dimensional neuron models—of the refractory exponential integrate-and-fire type—provide highly accurate predictions for spike-times. The method therefore provides a useful tool for the construction of tractable models and rapid experimental classification of cortical neurons
Desynchronization in diluted neural networks
The dynamical behaviour of a weakly diluted fully-inhibitory network of
pulse-coupled spiking neurons is investigated. Upon increasing the coupling
strength, a transition from regular to stochastic-like regime is observed. In
the weak-coupling phase, a periodic dynamics is rapidly approached, with all
neurons firing with the same rate and mutually phase-locked. The
strong-coupling phase is characterized by an irregular pattern, even though the
maximum Lyapunov exponent is negative. The paradox is solved by drawing an
analogy with the phenomenon of ``stable chaos'', i.e. by observing that the
stochastic-like behaviour is "limited" to a an exponentially long (with the
system size) transient. Remarkably, the transient dynamics turns out to be
stationary.Comment: 11 pages, 13 figures, submitted to Phys. Rev.
Event-driven simulations of a plastic, spiking neural network
We consider a fully-connected network of leaky integrate-and-fire neurons
with spike-timing-dependent plasticity. The plasticity is controlled by a
parameter representing the expected weight of a synapse between neurons that
are firing randomly with the same mean frequency. For low values of the
plasticity parameter, the activities of the system are dominated by noise,
while large values of the plasticity parameter lead to self-sustaining activity
in the network. We perform event-driven simulations on finite-size networks
with up to 128 neurons to find the stationary synaptic weight conformations for
different values of the plasticity parameter. In both the low and high activity
regimes, the synaptic weights are narrowly distributed around the plasticity
parameter value consistent with the predictions of mean-field theory. However,
the distribution broadens in the transition region between the two regimes,
representing emergent network structures. Using a pseudophysical approach for
visualization, we show that the emergent structures are of "path" or "hub"
type, observed at different values of the plasticity parameter in the
transition region.Comment: 9 pages, 6 figure
Crossover between Levy and Gaussian regimes in first passage processes
We propose a new approach to the problem of the first passage time. Our
method is applicable not only to the Wiener process but also to the
non--Gaussian Lvy flights or to more complicated stochastic
processes whose distributions are stable. To show the usefulness of the method,
we particularly focus on the first passage time problems in the truncated
Lvy flights (the so-called KoBoL processes), in which the
arbitrarily large tail of the Lvy distribution is cut off. We
find that the asymptotic scaling law of the first passage time distribution
changes from -law (non-Gaussian Lvy
regime) to -law (Gaussian regime) at the crossover point. This result
means that an ultra-slow convergence from the non-Gaussian Lvy
regime to the Gaussian regime is observed not only in the distribution of the
real time step for the truncated Lvy flight but also in the
first passage time distribution of the flight. The nature of the crossover in
the scaling laws and the scaling relation on the crossover point with respect
to the effective cut-off length of the Lvy distribution are
discussed.Comment: 18pages, 7figures, using revtex4, to appear in Phys.Rev.
Adaptation Reduces Variability of the Neuronal Population Code
Sequences of events in noise-driven excitable systems with slow variables
often show serial correlations among their intervals of events. Here, we employ
a master equation for general non-renewal processes to calculate the interval
and count statistics of superimposed processes governed by a slow adaptation
variable. For an ensemble of spike-frequency adapting neurons this results in
the regularization of the population activity and an enhanced post-synaptic
signal decoding. We confirm our theoretical results in a population of cortical
neurons.Comment: 4 pages, 2 figure
Noise Induced Coherence in Neural Networks
We investigate numerically the dynamics of large networks of globally
pulse-coupled integrate and fire neurons in a noise-induced synchronized state.
The powerspectrum of an individual element within the network is shown to
exhibit in the thermodynamic limit () a broadband peak and an
additional delta-function peak that is absent from the powerspectrum of an
isolated element. The powerspectrum of the mean output signal only exhibits the
delta-function peak. These results are explained analytically in an exactly
soluble oscillator model with global phase coupling.Comment: 4 pages ReVTeX and 3 postscript figure
Comparison of Langevin and Markov channel noise models for neuronal signal generation
The stochastic opening and closing of voltage-gated ion channels produces
noise in neurons. The effect of this noise on the neuronal performance has been
modelled using either approximate or Langevin model, based on stochastic
differential equations or an exact model, based on a Markov process model of
channel gating. Yet whether the Langevin model accurately reproduces the
channel noise produced by the Markov model remains unclear. Here we present a
comparison between Langevin and Markov models of channel noise in neurons using
single compartment Hodgkin-Huxley models containing either and
, or only voltage-gated ion channels. The performance of the
Langevin and Markov models was quantified over a range of stimulus statistics,
membrane areas and channel numbers. We find that in comparison to the Markov
model, the Langevin model underestimates the noise contributed by voltage-gated
ion channels, overestimating information rates for both spiking and non-spiking
membranes. Even with increasing numbers of channels the difference between the
two models persists. This suggests that the Langevin model may not be suitable
for accurately simulating channel noise in neurons, even in simulations with
large numbers of ion channels
- …