431 research outputs found

    Reflection Matrix Method for Controlling Light After Reflection From a Diffuse Scattering Surface

    Get PDF
    This research focuses on reflective inverse diffusion, which was a proof-of-concept experiment that used phase modulation to shape the wavefront of a laser causing it to refocus after reflection from a rough surface. By refocusing the light, reflective inverse diffusion has the potential to eliminate the complex radiometric model of indirect photography by creating a virtual light source at the first diffuse reflector that satisfies the line-of-sight requirement of dual photography. However, the initial reflective inverse diffusion experiments provided no mathematical background and were conducted under the premise that the process operated similarly to transmissive inverse diffusion. In this research, diffraction modeling of the reflective inverse diffusion experiments led to the development of Fourier transform-based simulations. Simulations and experimentation were used to develop reflection matrix methods that determine the proper phase modulation to refocus light after reflection to any location in the observation plane. These techniques provide a new method for controlled illumination of an occluded scene that can be used in conjunction with dual photography. This document provides the mathematical background for reflective inverse diffusion, the reflection matrix methods for phase modulation, and describes the simulations and experiments conducted

    Beam Formation and Vernier Steering off of a Rough Surface

    Get PDF
    Wavefront shaping can refocus light after it reflects from an optically rough surface. One proposed use case of this effect is in indirect imaging; if any rough surface could be turned into an illumination source, objects out of the direct line of sight could be illuminated. In this paper, we demonstrate the superior performance of a genetic algorithm compared to other iterative feedback-based wavefront shaping algorithms in achieving reflective inverse diffusion for a focal plane system. Next, the ability to control the pointing direction of the refocused beam with high precision over a narrow angular range is demonstrated, though the challenge of increasing the overall scanning range of the refocused beam remains. The method of beam steering demonstrated in this paper could act as a vernier adjustment to a coarse adjustment offered by another method

    Reflective Inverse Diffusion

    Get PDF
    Phase front modulation was previously used to refocus light after transmission through scattering media. This process has been adapted here to work in reflection. A liquid crystal spatial light modulator is used to conjugate the phase scattering properties of diffuse reflectors to produce a converging phase front just after reflection. The resultant focused spot had intensity enhancement values between 13 and 122 depending on the type of reflector. The intensity enhancement of more specular materials was greater in the specular region, while diffuse reflector materials achieved a greater enhancement in non-specular regions, facilitating non-mechanical steering of the focused spot. Scalar wave optics modeling corroborates the experimental results

    Measuring the Reflection Matrix of a Rough Surface

    Get PDF
    Phase modulation methods for imaging around corners with reflectively scattered light required illumination of the occluded scene with a light source either in the scene or with direct line of sight to the scene. The RM (reflection matrix) allows control and refocusing of light after reflection, which could provide a means of illuminating an occluded scene without access or line of sight. Two optical arrangements, one focal-plane, the other an imaging system, were used to measure the RM of five different rough-surface reflectors. Intensity enhancement values of up to 24 were achieved. Surface roughness, correlation length, and slope were examined for their effect on enhancement. Diffraction-based simulations were used to corroborate experimental results

    Electroconvulsive Therapy - Guidelines for Health Authorities in British Columbia

    Get PDF
    The purpose of these guidelines for electroconvulsive therapy (ECT Guidelines) is to standardize the delivery of electroconvulsive therapy services across British Columbia. There will be differences in the way care is delivered according to local resources, but good basic care must be available wherever ECT is provided. These guidelines cover patient and family education, clinical applications of ECT by physicians, nurses, and anesthetists, as well as suggestions for charting, professional education, and quality assurance programs. Disclaimer: This document appears here with permission from the UBC Department of Psychiatry and the BC Ministry of Health. The material is only current to the date of initial publication. New, more accurate, information may be available. For completeness, please investigate the most recent details on this topic

    One-Dimensional Energy Dispersion of Single-Walled Carbon Nanotubes by Resonant Electron Scattering

    Full text link
    We characterized the energy band dispersion near the Fermi level in single-walled carbon nanotubes using low-temperature scanning tunneling microscopy. Analysis of energy dependent standing wave oscillations, which result from quantum interference of electrons resonantly scattered by defects, yield a linear energy dispersion near EF, and indicate the importance of parity in scattering for armchair single-walled carbon nanotubes. Additionally, these data provide values of the tight-binding overlap integral and Fermi wavevector in good agreement with previous work, but indicate that the electron coherence length is substantially shortened.Comment: 5 pages, 3 figure

    Coupling Constant pH Molecular Dynamics with Accelerated Molecular Dynamics

    Get PDF
    An extension of the constant pH method originally implemented by Mongan et al. (J. Comput. Chem.2004, 25, 2038−2048) is proposed in this study. This adapted version of the method couples the constant pH methodology with the enhanced sampling technique of accelerated molecular dynamics, in an attempt to overcome the sampling issues encountered with current standard constant pH molecular dynamics methods. Although good results were reported by Mongan et al. on application of the standard method to the hen egg-white lysozyme (HEWL) system, residues which possess strong interactions with neighboring groups tend to converge slowly, resulting in the reported inconsistencies for predicted pKa values, as highlighted by the authors. The application of the coupled method described in this study to the HEWL system displays improvements over the standard version of the method, with the improved sampling leading to faster convergence and producing pKa values in closer agreement to those obtained experimentally for the more slowly converging residues

    Dapagliflozin: a sodium glucose cotransporter 2 inhibitor in development for type 2 diabetes

    Get PDF
    Type 2 diabetes mellitus (T2DM) is a growing worldwide epidemic. Patients face lifelong therapy to control hyperglycemia and prevent the associated complications. There are many medications, with varying mechanisms, available for the treatment of T2DM, but almost all target the declining insulin sensitivity and secretion that are associated with disease progression. Medications with such insulin-dependent mechanisms of action often lose efficacy over time, and there is increasing interest in the development of new antidiabetes medications that are not dependent upon insulin. One such approach is through the inhibition of renal glucose reuptake. Dapagliflozin, the first of a class of selective sodium glucose cotransporter 2 inhibitors, reduces renal glucose reabsorption and is currently under development for the treatment of T2DM. Here, we review the literature relating to the preclinical and clinical development of dapagliflozin

    Activation of BMP-Smad1/5/8 Signaling Promotes Survival of Retinal Ganglion Cells after Damage In Vivo

    Get PDF
    While the essential role of bone morphogenetic protein (BMP) signaling in nervous system development is well established, its function in the adult CNS is poorly understood. We investigated the role of BMP signaling in the adult mouse retina following damage in vivo. Intravitreal injection of N-Methyl-D-aspartic acid (NMDA) induced extensive retinal ganglion cell death by 2 days. During this period, BMP2, -4 and -7 were upregulated, leading to phosphorylation of the downstream effector, Smad1/5/8 in the inner retina, including in retinal ganglion cells. Expression of Inhibitor of differentiation 1 (Id1; a known BMP-Smad1/5/8 target) was also upregulated in the retina. This activation of BMP-Smad1/5/8 signaling was also observed following light damage, suggesting that it is a general response to retinal injuries. Co-injection of BMP inhibitors with NMDA effectively blocked the damage-induced BMP-Smad1/5/8 activation and led to further cell death of retinal ganglion cells, when compared with NMDA injection alone. Moreover, treatment of the retina with exogenous BMP4 along with NMDA damage led to a significant rescue of retinal ganglion cells. These data demonstrate that BMP-Smad1/5/8 signaling is neuroprotective for retinal ganglion cells after damage, and suggest that stimulation of this pathway can serve as a potential target for neuroprotective therapies in retinal ganglion cell diseases, such as glaucoma
    • …
    corecore