2,987 research outputs found
Understanding the Impact of Meteorological Spatiotemporal Variability on Distant Focusing Overpressure Risk
Since the 1950s, the amplification of blast energy from explosions has been understood to be a significant hazard to public safety at launch ranges. Historically, the risk assessment of the Distant Focusing Overpressure (DFO) hazard started with a single temperature and wind profile (e.g., a radiosonde launch) as input to acoustic 1-D ray tracing models. By analyzing rays propagation and performing ray tracing, population centers under high DFO risk can be identified. Although this method is useful, less is known about how the blast waves can be focused when the spatiotemporal variability of the input profiles are considered. In summary, this work aims to consider how realistic atmospheric boundary layer variability (e.g., turbulence, land-surface contrasts) may affect blast waves propagation and focusing and, as a result, DFO risk assessment results
Pressure-induced phase transition and bi-polaronic sliding in a hole-doped Cu_2O_3 ladder system
We study a hole-doped two-leg ladder system including metal ions, oxygen, and
electron-lattice interaction, as a model for Sr_{14-x}Ca_xCu_{24}O_{41-\delta}.
Single- and bi-polaronic states at 1/4-hole doping are modeled as functions of
pressure by applying an unrestricted Hartree-Fock approximation to a multiband
Peierls-Hubbard Hamiltonian. We find evidence for a pressure-induced phase
transition between single-polaron and bi-polaron states. The electronic and
phononic excitations in those states, including distinctive local lattice
vibrational modes, are calculated by means of a direct-space Random Phase
approximation. Finally, as a function of pressure, we identify a transition
between site- and bond-centered bi-polarons, accompanied by a soft mode and a
low-energy charge-sliding mode. We suggest comparisons with available
experimented data
Constant effective mass across the phase diagram of high-T cuprates
We investigate the hole dynamics in two prototypical high temperature
superconducting systems: LaSrCuO and YBaCuO using a combination of DC transport and infrared spectroscopy. By
exploring the effective spectral weight obtained with optics in conjunction
with DC Hall results we find that the transition to the Mott insulating state
in these systems is of the "vanishing carrier number" type since we observe no
substantial enhancement of the mass as one proceeds to undoped phases. Further,
the effective mass remains constant across the entire underdoped regime of the
phase diagram. We discuss the implications of these results for the
understanding of both transport phenomena and pairing mechanism in high-T
systems.Comment: 5 pages, 2 figure
- …