2,296 research outputs found
A Simple Explanation for the X(3872) Mass Shift Observed for Decay to D^{*0} {D^0}bar
We propose a simple explanation for the increase of approximately
3 MeV/c^2 in the mass value of the X(3872) obtained from
D^{*0} {D^0}bar decay relative to that obtained from decay to J/psi pi+ pi-.
If the total width of the X(3872) is 2-3 MeV, the peak position in the
D^{*0} {D^0}bar invariant mass distribution is sensitive to the final state
orbital angular momentum because of the proximity of the X(3872) to D^{*0}
{D^0}bar threshold. We show that for total width 3 MeV and one unit of orbital
angular momentum, a mass shift ~3 MeV/c^2 is obtained; experimental mass
resolution should slightly increase this value. A consequence is that
spin-parity 2^- is favored for the X(3872).Comment: 3.5 pages, 4 eps figure
Self-consistent Green's functions calculation of the nucleon mean-free path
The extension of Green's functions techniques to the complex energy plane
provides access to fully dressed quasi-particle properties from a microscopic
perspective. Using self-consistent ladder self-energies, we find both spectra
and lifetimes of such quasi-particles in nuclear matter. With a consistent
choice of the group velocity, the nucleon mean-free path can be computed. Our
results indicate that, for energies above 50 MeV at densities close to
saturation, a nucleon has a mean-free path of 4 to 5 femtometers.Comment: 5 pages, 4 figures. Minor changes, bibliography corrected. Accepted
version in Phys. Rev. Let
Double-valuedness of the electron wave function and rotational zero-point motion of electrons in rings
I propose that the phase of an electron's wave function changes by when
the electron goes around a loop maintaining phase coherence. Equivalently, that
the minimum orbital angular momentum of an electron in a ring is
rather than zero as generally assumed, hence that the electron in a ring has
azimuthal zero point motion. This proposal provides a physical explanation for
the origin of electronic `quantum pressure', it implies that a spin current
exists in the ground state of aromatic ring molecules, and it suggests an
explanation for the ubiquitousness of persistent currents observed in
mesoscopic rings
Systematic study of Optical Feshbach Resonances in an ideal gas
Using a narrow intercombination line in alkaline earth atoms to mitigate
large inelastic losses, we explore the Optical Feshbach Resonance (OFR) effect
in an ultracold gas of bosonic Sr. A systematic measurement of three
resonances allows precise determinations of the OFR strength and scaling law,
in agreement with coupled-channels theory. Resonant enhancement of the complex
scattering length leads to thermalization mediated by elastic and inelastic
collisions in an otherwise ideal gas. OFR could be used to control atomic
interactions with high spatial and temporal resolution.Comment: Significant changes to text and figure presentation to improve
clarity. Extended supplementary material. 4 pages, 4 figures; includes
supplementary material 8 pages, 4 figures. Submitted to Physical Review
Letter
Surface tension in a compressible liquid-drop model: Effects on nuclear density and neutron skin thickness
We examine whether or not the surface tension acts to increase the nucleon
density in the nuclear interior within a compressible liquid-drop model. We
find that it depends on the density dependence of the surface tension, which
may in turn be deduced from the neutron skin thickness of stable nuclei.Comment: 4 pages, 1 figure, to be published in Physical Review
Trapped Ion Imaging with a High Numerical Aperture Spherical Mirror
Efficient collection and analysis of trapped ion qubit fluorescence is
essential for robust qubit state detection in trapped ion quantum computing
schemes. We discuss simple techniques of improving photon collection efficiency
using high numerical aperture (N.A.) reflective optics. To test these
techniques we placed a spherical mirror with an effective N.A. of about 0.9
inside a vacuum chamber in the vicinity of a linear Paul trap. We demonstrate
stable and reliable trapping of single barium ions, in excellent agreement with
our simulations of the electric field in this setup. While a large N.A.
spherical mirror introduces significant spherical aberration, the ion image
quality can be greatly improved by a specially designed aspheric corrector lens
located outside the vacuum system. Our simulations show that the spherical
mirror/corrector design is an easy and cost-effective way to achieve high
photon collection rates when compared to a more sophisticated parabolic mirror
setup.Comment: 5 figure
- …