119 research outputs found

    Investigating the role of Cu-oxo species in Cu-nitrate formation over Cu-CHA catalysts

    Get PDF
    The speciation of framework-interacting Cu(II) sites in Cu-chabazite zeolite catalysts active in the selective catalytic reduction of NO(x) with NH(3) is studied, to investigate the influence of the Al content on the copper structure and their reactivity towards a NO/O(2) mixture. To this aim, three samples with similar Cu densities and different Si/Al ratios (5, 15 and 29) were studied using in situ X-ray absorption spectroscopy (XAS), FTIR and diffuse reflectance UV-Vis during pretreatment in O(2) followed by the reaction. XAS and UV-Vis data clearly show the main presence of Z(2)Cu(II) sites (with Z representing a framework negative charge) at a low Si/Al ratio, as predicted. EXAFS wavelet transform analysis showed a non-negligible fraction of proximal Z(2)Cu(II) monomers, possibly stabilized into two 6-membered rings within the same cage. These sites are not able to form Cu-nitrates by interaction with NO/O(2). By contrast, framework-anchored Z[Cu(II)(NO(3))] complexes with a chelating bidentate structure are formed in samples with a higher Si/Al ratio, by reaction of NO/O(2) with Z[Cu(II)(OH)] sites or structurally similar mono- or multi-copper Z(x)[Cu(II)(x)O(y)] sites. Linear combination fit (LCF) analysis of the XAS data showed good agreement between the fraction of Z[Cu(II)(OH)]/Z(x)[Cu(II)(x)O(y)] sites formed during activation in O(2) and that of Z[Cu(II)(NO(3))] complexes formed by reaction with NO/O(2), further confirming the chemical inertia of Z(2)Cu(II) towards these reactants in the absence of solvating NH(3) molecules

    Measuring, in solution, multiple-fluorophore labeling by combining Fluorescence Correlation Spectroscopy and photobleaching

    Get PDF
    Determining the number of fluorescent entities that are coupled to a given molecule (DNA, protein, etc.) is a key point of numerous biological studies, especially those based on a single molecule approach. Reliable methods are important, in this context, not only to characterize the labeling process, but also to quantify interactions, for instance within molecular complexes. We combined Fluorescence Correlation Spectroscopy (FCS) and photobleaching experiments to measure the effective number of molecules and the molecular brightness as a function of the total fluorescence count rate on solutions of cDNA (containing a few percent of C bases labeled with Alexa Fluor 647). Here, photobleaching is used as a control parameter to vary the experimental outputs (brightness and number of molecules). Assuming a Poissonian distribution of the number of fluorescent labels per cDNA, the FCS-photobleaching data could be easily fit to yield the mean number of fluorescent labels per cDNA strand (@ 2). This number could not be determined solely on the basis of the cDNA brightness, because of both the statistical distribution of the number of fluorescent labels and their unknown brightness when incorporated in cDNA. The statistical distribution of the number of fluorophores labeling cDNA was confirmed by analyzing the photon count distribution (with the cumulant method), which showed clearly that the brightness of cDNA strands varies from one molecule to the other.Comment: 38 pages (avec les figures

    HIV-1 Populations in Semen Arise through Multiple Mechanisms

    Get PDF
    HIV-1 is present in anatomical compartments and bodily fluids. Most transmissions occur through sexual acts, making virus in semen the proximal source in male donors. We find three distinct relationships in comparing viral RNA populations between blood and semen in men with chronic HIV-1 infection, and we propose that the viral populations in semen arise by multiple mechanisms including: direct import of virus, oligoclonal amplification within the seminal tract, or compartmentalization. In addition, we find significant enrichment of six out of nineteen cytokines and chemokines in semen of both HIV-infected and uninfected men, and another seven further enriched in infected individuals. The enrichment of cytokines involved in innate immunity in the seminal tract, complemented with chemokines in infected men, creates an environment conducive to T cell activation and viral replication. These studies define different relationships between virus in blood and semen that can significantly alter the composition of the viral population at the source that is most proximal to the transmitted virus

    Setting the stage: host invasion by HIV.

    Get PDF
    For more than two decades, HIV has infected millions of people worldwide each year through mucosal transmission. Our knowledge of how HIV secures a foothold at both the molecular and cellular levels has been expanded by recent investigations that have applied new technologies and used improved techniques to isolate ex vivo human tissue and generate in vitro cellular models, as well as more relevant in vivo animal challenge systems. Here, we review the current concepts of the immediate events that follow viral exposure at genital mucosal sites where most documented transmissions occur. Furthermore, we discuss the gaps in our knowledge that are relevant to future studies, which will shape strategies for effective HIV prevention
    corecore