7,841 research outputs found
Strings in Cosmological and Black Hole Backgrounds: Ring Solutions
The string equations of motion and constraints are solved for a ring shaped
Ansatz in cosmological and black hole spacetimes. In FRW universes with
arbitrary power behavior [R(X^0) = a\;|X^0|^{\a}\, ], the asymptotic form of
the solution is found for both and and we plot the
numerical solution for all times. Right after the big bang (), the
string energy decreasess as and the string size grows as for . Very
soon [ ] , the ring reaches its oscillatory regime with frequency
equal to the winding and constant size and energy. This picture holds for all
values of \a including string vacua (for which, asymptotically, \a = 1).
In addition, an exact non-oscillatory ring solution is found. For black hole
spacetimes (Schwarzschild, Reissner-Nordstr\oo m and stringy), we solve for
ring strings moving towards the center. Depending on their initial conditions
(essentially the oscillation phase), they are are absorbed or not by
Schwarzschild black holes. The phenomenon of particle transmutation is
explicitly observed (for rings not swallowed by the hole). An effective horizon
is noticed for the rings. Exact and explicit ring solutions inside the
horizon(s) are found. They may be interpreted as strings propagating between
the different universes described by the full black hole manifold.Comment: Paris preprint PAR-LPTHE-93/43. Uses phyzzx. Includes figures. Text
and figures compressed using uufile
Planetoid String Solutions in 3 + 1 Axisymmetric Spacetimes
The string propagation equations in axisymmetric spacetimes are exactly
solved by quadratures for a planetoid Ansatz. This is a straight
non-oscillating string, radially disposed, which rotates uniformly around the
symmetry axis of the spacetime. In Schwarzschild black holes, the string stays
outside the horizon pointing towards the origin. In de Sitter spacetime the
planetoid rotates around its center. We quantize semiclassically these
solutions and analyze the spin/(mass) (Regge) relation for the planetoids,
which turns out to be non-linear.Comment: Latex file, 14 pages, two figures in .ps files available from the
author
Strings Next To and Inside Black Holes
The string equations of motion and constraints are solved near the horizon
and near the singularity of a Schwarzschild black hole. In a conformal gauge
such that ( = worldsheet time coordinate) corresponds to the
horizon () or to the black hole singularity (), the string
coordinates express in power series in near the horizon and in power
series in around . We compute the string invariant size and
the string energy-momentum tensor. Near the horizon both are finite and
analytic. Near the black hole singularity, the string size, the string energy
and the transverse pressures (in the angular directions) tend to infinity as
. To leading order near , the string behaves as two dimensional
radiation. This two spatial dimensions are describing the sphere in the
Schwarzschild manifold.Comment: RevTex, 19 pages without figure
Quasi-elastic peak lineshapes in adsorbate diffusion on nearly flat surfaces at low coverages: the motional narrowing effect in Xe on Pt(111)
Quasi-elastic helium atom scattering measurements have provided clear
evidence for a two-dimensional free gas of Xe atoms on Pt(111) at low
coverages. Increasing the friction due to the surface, a gradual change of the
shape of the quasi-elastic peak is predicted and analyzed for this system in
terms of the so-called motional narrowing effect. The type of analysis
presented here for the quasi-elastic peak should be prior to any deconvolution
procedure carried out in order to better extract information from the process,
e.g. diffusion coefficients and jump distributions. Moreover, this analysis
also provides conditions for the free gas regime different than those reported
earlier.Comment: 12 pages, 4 figures (revised version
Strings Propagating in the 2+1 Dimensional Black Hole Anti de Sitter Spacetime
We study the string propagation in the 2+1 black hole anti de Sitter
background (2+1 BH-ADS). We find the first and second order fluctuations around
the string center of mass and obtain the expression for the string mass. The
string motion is stable, all fluctuations oscillate with real frequencies and
are bounded, even at We compare with the string motion in the ordinary
black hole anti de Sitter spacetime, and in the black string background, where
string instabilities develop and the fluctuations blow up at We find the
exact general solution for the circular string motion in all these backgrounds,
it is given closely and completely in terms of elliptic functions. For the
non-rotating black hole backgrounds the circular strings have a maximal bounded
size they contract and collapse into No indefinitely growing
strings, neither multi-string solutions are present in these backgrounds. In
rotating spacetimes, both the 2+1 BH-ADS and the ordinary Kerr-ADS, the
presence of angular momentum prevents the string from collapsing into
The circular string motion is also completely solved in the black hole de
Sitter spacetime and in the black string background (dual of the 2+1 BH-ADS
spacetime), in which expanding unbounded strings and multi-string solutions
appear.Comment: Latex, 54 pages + 2 tables and 4 figures (not included). PARIS-DEMIRM
94/01
QFT, String Temperature and the String Phase of De Sitter Space-time
The density of mass levels \rho(m) and the critical temperature for strings
in de Sitter space-time are found. QFT and string theory in de Sitter space are
compared. A `Dual'-transform is introduced which relates classical to quantum
string lengths, and more generally, QFT and string domains. Interestingly, the
string temperature in De Sitter space turns out to be the Dual transform of the
QFT-Hawking-Gibbons temperature. The back reaction problem for strings in de
Sitter space is addressed selfconsistently in the framework of the `string
analogue' model (or thermodynamical approach), which is well suited to combine
QFT and string study.We find de Sitter space-time is a self-consistent solution
of the semiclassical Einstein equations in this framework. Two branches for the
scalar curvature R(\pm) show up: a classical, low curvature solution (-), and a
quantum high curvature solution (+), enterely sustained by the strings. There
is a maximal value for the curvature R_{\max} due to the string back reaction.
Interestingly, our Dual relation manifests itself in the back reaction
solutions: the (-) branch is a classical phase for the geometry with intrinsic
temperature given by the QFT-Hawking-Gibbons temperature.The (+) is a stringy
phase for the geometry with temperature given by the intrinsic string de Sitter
temperature. 2 + 1 dimensions are considered, but conclusions hold generically
in D dimensions.Comment: LaTex, 24 pages, no figure
Line Shape Broadening in Surface Diffusion of Interacting Adsorbates with Quasielastic He Atom Scattering
The experimental line shape broadening observed in adsorbate diffusion on
metal surfaces with increasing coverage is usually related to the nature of the
adsorbate-adsorbate interaction. Here we show that this broadening can also be
understood in terms of a fully stochastic model just considering two noise
sources: (i) a Gaussian white noise accounting for the surface friction, and
(ii) a shot noise replacing the physical adsorbate-adsorbate interaction
potential. Furthermore, contrary to what could be expected, for relatively weak
adsorbate-substrate interactions the opposite effect is predicted: line shapes
get narrower with increasing coverage.Comment: 4 pages, 2 figures (slightly revised version
- …