7,841 research outputs found

    Strings in Cosmological and Black Hole Backgrounds: Ring Solutions

    Full text link
    The string equations of motion and constraints are solved for a ring shaped Ansatz in cosmological and black hole spacetimes. In FRW universes with arbitrary power behavior [R(X^0) = a\;|X^0|^{\a}\, ], the asymptotic form of the solution is found for both X0→0X^0 \to 0 and X0→∞X^0 \to \infty and we plot the numerical solution for all times. Right after the big bang (X0=0X^0 = 0), the string energy decreasess as R(X0)−1 R(X^0)^{-1} and the string size grows as R(X0) R(X^0) for 01 0 1 . Very soon [ X0∼1 X^0 \sim 1 ] , the ring reaches its oscillatory regime with frequency equal to the winding and constant size and energy. This picture holds for all values of \a including string vacua (for which, asymptotically, \a = 1). In addition, an exact non-oscillatory ring solution is found. For black hole spacetimes (Schwarzschild, Reissner-Nordstr\oo m and stringy), we solve for ring strings moving towards the center. Depending on their initial conditions (essentially the oscillation phase), they are are absorbed or not by Schwarzschild black holes. The phenomenon of particle transmutation is explicitly observed (for rings not swallowed by the hole). An effective horizon is noticed for the rings. Exact and explicit ring solutions inside the horizon(s) are found. They may be interpreted as strings propagating between the different universes described by the full black hole manifold.Comment: Paris preprint PAR-LPTHE-93/43. Uses phyzzx. Includes figures. Text and figures compressed using uufile

    Planetoid String Solutions in 3 + 1 Axisymmetric Spacetimes

    Get PDF
    The string propagation equations in axisymmetric spacetimes are exactly solved by quadratures for a planetoid Ansatz. This is a straight non-oscillating string, radially disposed, which rotates uniformly around the symmetry axis of the spacetime. In Schwarzschild black holes, the string stays outside the horizon pointing towards the origin. In de Sitter spacetime the planetoid rotates around its center. We quantize semiclassically these solutions and analyze the spin/(mass2^2) (Regge) relation for the planetoids, which turns out to be non-linear.Comment: Latex file, 14 pages, two figures in .ps files available from the author

    Strings Next To and Inside Black Holes

    Full text link
    The string equations of motion and constraints are solved near the horizon and near the singularity of a Schwarzschild black hole. In a conformal gauge such that τ=0\tau = 0 (τ\tau = worldsheet time coordinate) corresponds to the horizon (r=1r=1) or to the black hole singularity (r=0r=0), the string coordinates express in power series in τ\tau near the horizon and in power series in τ1/5\tau^{1/5} around r=0r=0. We compute the string invariant size and the string energy-momentum tensor. Near the horizon both are finite and analytic. Near the black hole singularity, the string size, the string energy and the transverse pressures (in the angular directions) tend to infinity as r−1r^{-1}. To leading order near r=0r=0, the string behaves as two dimensional radiation. This two spatial dimensions are describing the S2S^2 sphere in the Schwarzschild manifold.Comment: RevTex, 19 pages without figure

    Quasi-elastic peak lineshapes in adsorbate diffusion on nearly flat surfaces at low coverages: the motional narrowing effect in Xe on Pt(111)

    Full text link
    Quasi-elastic helium atom scattering measurements have provided clear evidence for a two-dimensional free gas of Xe atoms on Pt(111) at low coverages. Increasing the friction due to the surface, a gradual change of the shape of the quasi-elastic peak is predicted and analyzed for this system in terms of the so-called motional narrowing effect. The type of analysis presented here for the quasi-elastic peak should be prior to any deconvolution procedure carried out in order to better extract information from the process, e.g. diffusion coefficients and jump distributions. Moreover, this analysis also provides conditions for the free gas regime different than those reported earlier.Comment: 12 pages, 4 figures (revised version

    Strings Propagating in the 2+1 Dimensional Black Hole Anti de Sitter Spacetime

    Full text link
    We study the string propagation in the 2+1 black hole anti de Sitter background (2+1 BH-ADS). We find the first and second order fluctuations around the string center of mass and obtain the expression for the string mass. The string motion is stable, all fluctuations oscillate with real frequencies and are bounded, even at r=0.r=0. We compare with the string motion in the ordinary black hole anti de Sitter spacetime, and in the black string background, where string instabilities develop and the fluctuations blow up at r=0.r=0. We find the exact general solution for the circular string motion in all these backgrounds, it is given closely and completely in terms of elliptic functions. For the non-rotating black hole backgrounds the circular strings have a maximal bounded size rm,r_m, they contract and collapse into r=0.r=0. No indefinitely growing strings, neither multi-string solutions are present in these backgrounds. In rotating spacetimes, both the 2+1 BH-ADS and the ordinary Kerr-ADS, the presence of angular momentum prevents the string from collapsing into r=0.r=0. The circular string motion is also completely solved in the black hole de Sitter spacetime and in the black string background (dual of the 2+1 BH-ADS spacetime), in which expanding unbounded strings and multi-string solutions appear.Comment: Latex, 54 pages + 2 tables and 4 figures (not included). PARIS-DEMIRM 94/01

    QFT, String Temperature and the String Phase of De Sitter Space-time

    Get PDF
    The density of mass levels \rho(m) and the critical temperature for strings in de Sitter space-time are found. QFT and string theory in de Sitter space are compared. A `Dual'-transform is introduced which relates classical to quantum string lengths, and more generally, QFT and string domains. Interestingly, the string temperature in De Sitter space turns out to be the Dual transform of the QFT-Hawking-Gibbons temperature. The back reaction problem for strings in de Sitter space is addressed selfconsistently in the framework of the `string analogue' model (or thermodynamical approach), which is well suited to combine QFT and string study.We find de Sitter space-time is a self-consistent solution of the semiclassical Einstein equations in this framework. Two branches for the scalar curvature R(\pm) show up: a classical, low curvature solution (-), and a quantum high curvature solution (+), enterely sustained by the strings. There is a maximal value for the curvature R_{\max} due to the string back reaction. Interestingly, our Dual relation manifests itself in the back reaction solutions: the (-) branch is a classical phase for the geometry with intrinsic temperature given by the QFT-Hawking-Gibbons temperature.The (+) is a stringy phase for the geometry with temperature given by the intrinsic string de Sitter temperature. 2 + 1 dimensions are considered, but conclusions hold generically in D dimensions.Comment: LaTex, 24 pages, no figure

    Line Shape Broadening in Surface Diffusion of Interacting Adsorbates with Quasielastic He Atom Scattering

    Get PDF
    The experimental line shape broadening observed in adsorbate diffusion on metal surfaces with increasing coverage is usually related to the nature of the adsorbate-adsorbate interaction. Here we show that this broadening can also be understood in terms of a fully stochastic model just considering two noise sources: (i) a Gaussian white noise accounting for the surface friction, and (ii) a shot noise replacing the physical adsorbate-adsorbate interaction potential. Furthermore, contrary to what could be expected, for relatively weak adsorbate-substrate interactions the opposite effect is predicted: line shapes get narrower with increasing coverage.Comment: 4 pages, 2 figures (slightly revised version
    • …
    corecore