6,974 research outputs found
Detecting gravitational lensing cosmic shear from samples of several galaxies using two-dimensional spectral imaging
Studies of weak gravitational lensing by large-scale structures require the
measurement of the distortions introduced to the shapes of distant galaxies at
the few percent level by anisotropic light deflection along the line of sight.
To detect this signal on 1-10 arcmin scales in a particular field, accurate
measurements of the correlations between the shapes of order 1000-10000
galaxies are required. This large-scale averaging is required to accommodate
the unknown intrinsic shapes of the background galaxies, even with careful
removal of systematic effects. Here an alternative is discussed. If it is
possible to measure accurately the detailed dynamical structure of the
background galaxies, in particular rotating disks, then it should be possible
to measure directly the cosmic shear distortion, as it generally leads to a
non-self-consistent rotation curve. Narrow spectral lines and excellent
two-dimensional spatial resolution are required. The ideal lines and telescope
are CO rotational transitions and the Atacama Large Millimeter Array (ALMA)
respectively.Comment: 12 pages, 4 figures, Expected to appear in ApJ Letters Vol. 570, 10
May 2002. Replaced with final proof version correcting minor typo
3D MHD Modeling of the Gaseous Structure of the Galaxy: Synthetic Observations
We generated synthetic observations from the four-arm model presented in
Gomez & Cox (2004) for the Galactic ISM in the presence of a spiral
gravitational perturbation. We found that velocity crowding and diffusion have
a strong effect in the l-v diagram. The v-b diagram presents structures at the
expected spiral arm velocities, that can be explained by the off-the-plane
structure of the arms presented in previous papers of this series. Such
structures are observed in the Leiden/Dwingeloo HI survey. The rotation curve,
as measured from the inside of the modeled galaxy, shows similarities with the
observed one for the Milky Way Galaxy, although it has large deviations from
the smooth circular rotation corresponding to the background potential. The
magnetic field inferred from a synthetic synchrotron map shows a largely
circular structure, but with interesting deviations in the midplane due to
distortion of the field from circularity in the interarm regions.Comment: Accepted for publication in ApJ. Better quality figures in
http://www.astro.umd.edu/~gomez/publica/3d_galaxy-3.pd
Constraining the Collisional Nature of the Dark Matter Through Observations of Gravitational Wakes
We propose to use gravitational wakes as a direct observational probe of the
collisional nature of the dark matter. We calculate analytically the structure
of a wake generated by the motion of a galaxy in the core of an X-ray cluster
for dark matter in the highly-collisional and collisionless limits. We show
that the difference between these limits can be recovered from detailed X-ray
or weak lensing observations. We also discuss the sizes of sub-halos in these
limits. Preliminary X-ray data on the motion of NGC 1404 through the Fornax
group disfavors fluid-like dark matter but does not exclude scenarios in which
the dark matter is weakly collisional.Comment: 29 pages, 3 figures, submitted to Ap
Production of Milky Way structure by the Magellanic Clouds
Previous attempts at disturbing the galactic disk by the Magellanic Clouds
relied on direct tidal forcing. However, by allowing the halo to actively
respond rather than remain a rigid contributor to the rotation curve, the
Clouds may produce a wake in the halo which then distorts the disk. Recent work
reported here suggests that the Magellanic Clouds use this mechanism to produce
disk distortions sufficient to account for both the radial location, position
angle and sign of the HI warp and observed anomalies in stellar kinematics
towards the galactic anticenter and LSR motion.Comment: 8 pages, uuencoded compressed PostScript, no figures, html version
with figures and mpeg simulations available at
http://www-astro.phast.umass.edu/Preprints/martin/martin1/lmc_online.htm
Dynamical Friction of a Circular-Orbit Perturber in a Gaseous Medium
We investigate the gravitational wake due to, and dynamical friction on, a
perturber moving on a circular orbit in a uniform gaseous medium using a
semi-analytic method. This work is a straightforward extension of Ostriker
(1999) who studied the case of a straight-line trajectory. The circular orbit
causes the bending of the wake in the background medium along the orbit,
forming a long trailing tail. The wake distribution is thus asymmetric, giving
rise to the drag forces in both opposite (azimuthal) and lateral (radial)
directions to the motion of the perturber, although the latter does not
contribute to orbital decay much. For subsonic motion, the density wake with a
weak tail is simply a curved version of that in Ostriker and does not exhibit
the front-back symmetry. The resulting drag force in the opposite direction is
remarkably similar to the finite-time, linear-trajectory counterpart. On the
other hand, a supersonic perturber is able to overtake its own wake, possibly
multiple times, and develops a very pronounced tail. The supersonic tail
surrounds the perturber in a trailing spiral fashion, enhancing the perturbed
density at the back as well as far front of the perturber. We provide the
fitting formulae for the drag forces as functions of the Mach number, whose
azimuthal part is surprisingly in good agreement with the Ostriker's formula,
provided Vp t=2 Rp, where Vp and Rp are the velocity and orbital radius of the
perturber, respectively.Comment: 28 pages, 9 figures, accepted for publication in Astrophysical
Journa
Vocational perspectives after spinal cord injury
Objective: To give insight into the vocational situation several years after a traumatic spinal cord injury (SCI) and describe the personal experiences and unmet needs; to give an overview of health and functional status per type of SCI and their relationship with employment status. Design: Descriptive analysis of data from a questionnaire. Setting: Dutch rehabilitation centre with special department for patients with spinal cord injuries. Subjects: Fifty-seven patients with a traumatic SCI, aged 18-60 years, admitted to the rehabilitation centre from 1990 to 1998. Main measures: Questionnaire with items related to vocational outcome, job experiences, health and functional status. Results: Of 49 patients who were working at the moment of SCI 60% currently had a paid job. Vocational outcome was related to a higher educational level. A significant relation between the SCI-specific health and functional status and employment was not found. The respondents who changed to a new employer needed more time to resume work, but seemed more satisfied with the job and lost fewer working hours than those who resumed work with the same employer. In spite of reasonable to good satisfaction with the current work situation, several negative experiences and unmet needs were reported. Conclusions: Despite a high participation in paid work following SCI, the effort of the disabled worker to have and keep a job should not be underestimated
Extrapancreatic insulin effect of glibenclamide
In eight patients with uncomplicated non insulin dependent diabetes mellitus, serum insulin levels, serum C-peptide levels and blood glucose levels were measured before and after oral administration of glibenclamide 0.1 mg/kg body weight and a test meal, or after a test meal alone. The rise in serum insulin levels persisted longer after glibenclamide. The initial rise in serum insulin was of the same magnitude in both situations, as was the rise in serum C-peptide levels during the entire 5 h study. It is concluded that glibenclamide is able to maintain a more protonged increase in serum insulin levels by inhibiting the degradation of insulin in the vascular endothelial cells of the liver. The inhibition contributes to the blood glucose lowering effect of glibenclamide
SPH Simulations of Galactic Gaseous Disk with Bar: Distribution and Kinematic Structure of Molecular Clouds toward the Galactic Center
We have performed Smoothed Particle Hydrodynamic (SPH) simulations to study
the response of molecular clouds in the Galactic disk to a rotating bar and
their subsequent evolution in the Galactic Center (GC) region. The Galactic
potential in our models is contributed by three axisymmetric components
(massive halo, exponential disk, compact bulge) and a non-axisymmetric bar.
These components are assumed to be invariant in time in the frame corotating
with the bar. Some noticeable features such as an elliptical outer ring, spiral
arms, a gas-depletion region, and a central concentration have been developed
due to the influence of the bar. The rotating bar induces non-circular motions
of the SPH particles, but hydrodynamic collisions tend to suppress the random
components of the velocity. The velocity field of the SPH particles is
consistent with the kinematics of molecular clouds observed in HCN (1-0)
transition; these clouds are thought to be very dense clouds. However, the l-v
diagram of the clouds traced by CO is quite different from that of our SPH
simulation, being more similar to that obtained from simulations using
collisionless particles. The diagram of a mixture of collisional and
collisionless particles gives better reproduction of the kinematic structures
of the GC clouds observed in the CO line. The fact that the kinematics of HCN
clouds can be reproduced by the SPH particles suggests that the dense clouds in
the GC are formed via cloud collisions induced by rotating bar.Comment: 31 pages, 10 pigures, accepted for publication in Ap
Functional outcome of patients with spinal cord injury: rehabilitation outcome study
Objective: To increase our knowledge of neurological recovery and functional outcome of patients with spinal cord injuries in order to make more successful rehabilitation programmes based on realistic goals.Design: Descriptive analysis of data gathered in an information system.Setting: Rehabilitation centre in The Netherlands with special department for patients with spinal cord injuries.Subjects: Fifty-five patients with traumatic spinal cord lesions admitted to the rehabilitation centre from 1988 to 1994. Main outcome measures: The functional improvement was presented in terms of progress in independence in nine daily activity skills. Independence was rated on a four-point scale.Results: From admission to discharge, lesions in 100% of patients with tetraplegia and 96% of patients with paraplegia remained complete. Significant progress in independence was made in self-care, ambulation and bladder and bowel care. Differences were found in the extent of functional improvement between subgroups of patients with different levels and extent of lesion. Contrary to expectations based on theoretical models, patients with complete paraplegia did not achieve maximal independence in self-care. Independent walking was only attained by patients with incomplete lesions. Regarding outcome of bladder and bowel care, poor results were found, especially the independence in defaecation and toilet transfers.Conclusions: The results of this study provided more insight into the functional outcome of a group of patients with traumatic spinal cord injury. More research is needed to evaluate the rehabilitation programmes for these patients
- …