3 research outputs found

    Circadian rhythms in septic shock patients

    Get PDF
    Background: Despite the intensive efforts to improve the diagnosis and therapy of sepsis over the last decade, the mortality of septic shock remains high and causes substantial socioeconomical burden of disease. The function of immune cells is time-of-day-dependent and is regulated by several circadian clock genes. This study aims to investigate whether the rhythmicity of clock gene expression is altered in patients with septic shock. Methods: This prospective pilot study was performed at the university hospital Charite-Universitatsmedizin Berlin, Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK). We included 20 patients with septic shock between May 2014 and January 2018, from whom blood was drawn every 4 h over a 24-h period to isolate CD14-positive monocytes and to measure the expression of 17 clock and clock-associated genes. Of these patients, 3 whose samples expressed fewer than 8 clock genes were excluded from the final analysis. A rhythmicity score S-P was calculated, which comprises values between -1 (arrhythmic) and 1 (rhythmic), and expression data were compared to data of a healthy study population additionally. Results: 77% of the measured clock genes showed inconclusive rhythms, i.e., neither rhythmic nor arrhythmic. The clock genes NR1D1, NR1D2 and CRY2 were the most rhythmic, while CLOCK and ARNTL were the least rhythmic. Overall, the rhythmicity scores for septic shock patients were significantly (p < 0.0001) lower (0.23 +/- 0.26) compared to the control group (12 healthy young men, 0.70 +/- 0.18). In addition, the expression of clock genes CRY1, NR1D1, NR1D2, DBP, and PER2 was suppressed in septic shock patients and CRY2 was significantly upregulated compared to controls. Conclusion: Molecular rhythms in immune cells of septic shock patients were substantially altered and decreased compared to healthy young men. The decrease in rhythmicity was clock gene-dependent. The loss of rhythmicity and down-regulation of clock gene expression might be caused by sepsis and might further deteriorate immune responses and organ injury, but further studies are necessary to understand underlying pathophysiological mechanisms

    Mild maternal hyperglycemia in INS<sup>C93S</sup> transgenic pigs causes impaired glucose tolerance and metabolic alterations in neonatal offspring

    Get PDF
    Alongside the obesity epidemic, the prevalence of maternal diabetes is rising worldwide, and adverse effects on fetal development and metabolic disturbances in the offspring's later life have been described. To clarify whether metabolic programming effects are due to mild maternal hyperglycemia without confounding obesity, we investigated wild-type offspring of INSC93S transgenic pigs, which are a novel genetically modified large-animal model expressing mutant insulin (INS) C93S in pancreatic β-cells. This mutation results in impaired glucose tolerance, mild fasting hyperglycemia and insulin resistance during late pregnancy. Compared with offspring from wild-type sows, piglets from hyperglycemic mothers showed impaired glucose tolerance and insulin resistance (homeostatic model assessment of insulin resistance: +3-fold in males; +4.4-fold in females) prior to colostrum uptake. Targeted metabolomics in the fasting and insulin-stimulated state revealed distinct alterations in the plasma metabolic profile of piglets from hyperglycemic mothers. They showed increased levels of acylcarnitines, gluconeogenic precursors such as alanine, phospholipids (in particular lyso-phosphatidylcholines) and α-aminoadipic acid, a potential biomarker for type 2 diabetes. These observations indicate that mild gestational hyperglycemia can cause impaired glucose tolerance, insulin resistance and associated metabolic alterations in neonatal offspring of a large-animal model born at a developmental maturation status comparable to human babies.</p
    corecore