189 research outputs found

    Baseline neutrophil-to-lymphocyte ratio as a predictive and prognostic biomarker in patients with metastatic castration-resistant prostate cancer treated with cabazitaxel versus abiraterone or enzalutamide in the CARD study

    Get PDF
    Abiraterona; Cabazitaxel; Factor pronósticoAbiraterona; Cabazitaxel; Factor pronòsticAbiraterone; Cabazitaxel; Prognostic factorBackground There is growing evidence that a high neutrophil-to-lymphocyte ratio (NLR) is associated with poor overall survival (OS) for patients with metastatic castration-resistant prostate cancer (mCRPC). In the CARD study (NCT02485691), cabazitaxel significantly improved radiographic progression-free survival (rPFS) and OS versus abiraterone or enzalutamide in patients with mCRPC previously treated with docetaxel and the alternative androgen-receptor-targeted agent (ARTA). Here, we investigated NLR as a biomarker. Patients and methods CARD was a multicenter, open-label study that randomized patients with mCRPC to receive cabazitaxel (25 mg/m2 every 3 weeks) versus abiraterone (1000 mg/day) or enzalutamide (160 mg/day). The relationships between baseline NLR [< versus ≥ median (3.38)] and rPFS, OS, time to prostate-specific antigen progression, and prostate-specific antigen response to cabazitaxel versus ARTA were evaluated using Kaplan–Meier estimates. Multivariable Cox regression with stepwise selection of covariates was used to investigate the prognostic association between baseline NLR and OS. Results The rPFS benefit with cabazitaxel versus ARTA was particularly marked in patients with high NLR {8.5 versus 2.8 months, respectively; hazard ratio (HR) 0.43 [95% confidence interval (CI) 0.27-0.67]; P < 0.0001}, compared with low NLR [7.5 versus 5.1 months, respectively; HR 0.69 (95% CI 0.45-1.06); P = 0.0860]. Higher NLR (continuous covariate, per 1 unit increase) independently associated with poor OS [HR 1.05 (95% CI 1.02-1.08); P = 0.0003]. For cabazitaxel, there was no OS difference between patients with high versus low NLR (15.3 versus 12.9 months, respectively; P = 0.7465). Patients receiving an ARTA with high NLR, however, had a worse OS versus those with low NLR (9.5 versus 13.3 months, respectively; P = 0.0608). Conclusions High baseline NLR predicts poor outcomes with an ARTA in patients with mCRPC previously treated with docetaxel and the alternative ARTA. Conversely, the activity of cabazitaxel is retained irrespective of NLR.This work was supported by Sanofi Genzyme (no grant number). The authors were responsible for all content and editorial decisions and received no honoraria for development of this manuscript

    Mechanism and function of Vav1 localisation in TCR signalling

    Get PDF
    The antigen-specific binding of T cells to antigen presenting cells results in recruitment of signalling proteins to microclusters at the cell-cell interface known as the immunological synapse (IS). The Vav1 guanine nucleotide exchange factor plays a critical role in T cell antigen receptor (TCR) signalling, leading to the activation of multiple pathways. We now show that it is recruited to microclusters and to the IS in primary CD4+ and CD8+ T cells. Furthermore, we show that this recruitment depends on the SH2 and C-terminal SH3 (SH3B) domains of Vav1, and on phosphotyrosines 112 and 128 of the SLP76 adaptor protein. Biophysical measurements show that Vav1 binds directly to these residues on SLP76 and that efficient binding depends on the SH2 and SH3B domains of Vav1. Finally, we show that the same two domains are critical for the phosphorylation of Vav1 and its signalling function in TCR-induced calcium flux. We propose that Vav1 is recruited to the IS by binding to SLP76 and that this interaction is critical for the transduction of signals leading to calcium flux

    Expression and prognostic impact of the protein tyrosine phosphatases PRL-1, PRL-2, and PRL-3 in breast cancer

    Get PDF
    The aim of this study was to investigate the expression of the protein tyrosine phosphatases (PTP) PRL-1, PRL-2, and PRL-3 in human breast cancer and to evaluate its clinical and prognostic significance. PRL-PTP mRNA expression was examined in malignant (n=7) and nonmalignant (n=7) cryoconserved breast tissue samples as well as in eight breast cancer cell lines by RT–PCR. Furthermore, protein expression of PRL-3 was analysed semiquantitatively by immunohistochemistry in ductal breast carcinoma in situ (n=135) and invasive breast cancer (n=147) by use of tissue microarray technology (TMA). In 24 lymph node-positive patients we selected the corresponding lymph node metastases for analysis of PRL-3 expression, and a validation set (n=99) of invasive breast cancer samples was examined. Staining results were correlated with clinicopathological parameters and long-term follow-up. PRL-3 mRNA expression was significantly higher in malignant compared to benign breast tissue. For PRL-1 and PRL-2 expression no significant differences were observed. Staining of TMAs showed PRL-3 expression in 85.9% ductal carcinoma in situ and 75.5% invasive breast carcinomas. Analysis of survival parameters revealed a shorter disease-free survival (DFS) in patients with PRL-3-positive carcinomas, and in particular a significantly shorter DFS in nodal-positive patients with PRL-3 overexpressing tumours as compared to PRL-3-negative breast carcinomas (66±7 months (95% CI, 52–80) vs 97±9 months (95% CI, 79–115); P=0.032). Moreover, we found a more frequent expression of PRL-3 in lymph node metastases as compared to the primary tumours (91.7 vs 66.7%; P=0.033). Our results suggest that PRL-3 might serve as a novel prognostic factor in breast cancer, which may help to predict an adverse disease outcome

    An expression signature of syndecan-1 (CD138), E-cadherin and c-met is associated with factors of angiogenesis and lymphangiogenesis in ductal breast carcinoma in situ

    Get PDF
    INTRODUCTION: Heparan sulphate proteoglycan syndecan-1 modulates cell proliferation, adhesion, migration and angiogenesis. It is a coreceptor for the hepatocyte growth factor receptor c-met, and its coexpression with E-cadherin is synchronously regulated during epithelial-mesenchymal transition. In breast cancer, changes in the expression of syndecan-1, E-cadherin and c-met correlate with poor prognosis. In this study we evaluated whether coexpression of these functionally linked prognostic markers constitutes an expression signature in ductal carcinoma in situ (DCIS) of the breast that may promote cell proliferation and (lymph)angiogenesis. METHODS: Expression of syndecan-1, E-cadherin and c-met was detected immunohistochemically using a tissue microarray in tumour specimens from 200 DCIS patients. Results were correlated with the expression patterns of angiogenic and lymphangiogenic markers. Coexpression of the three prognostic markers was evaluated in human breast cancer cells by confocal immunofluorescence microscopy and RT-PCR. RESULTS: Coexpression and membrane colocalization of the three markers was confirmed in MCF-7 cells. E-cadherin expression decreased, and c-met expression increased progressively in more aggressive cell lines. Tissue microarray analysis revealed strong positive staining of tumour cells for syndecan-1 in 72%, E-cadherin in 67.8% and c-met in 48.6% of DCIS. E-cadherin expression was significantly associated with c-met and syndecan-1. Expression of c-met and syndecan-1 was significantly more frequent in the subgroup of patients with pure DCIS than in those with DCIS and a coexisting invasive carcinoma. Levels of c-met and syndecan-1 expression were associated with HER2 expression. Expression of c-met significantly correlated with expression of endothelin A and B receptors, vascular endothelial growth factor (VEGF)-A and fibroblast growth factor receptor-1, whereas E-cadherin expression correlated significantly with endothelin A receptor, VEGF-A and VEGF-C staining. CONCLUSION: Syndecan-1, E-cadherin and c-met constitute a marker signature associated with angiogenic and lymphangiogenic factors in DCIS. This coexpression may reflect a state of parallel activation of different signal transduction pathways, promoting tumour cell proliferation and angiogenesis. Our findings have implications for future therapeutic approaches in terms of a multiple target approach, which may be useful early in breast cancer progression

    Adenosine 2A receptor and TIM3 suppress cytolytic killing of tumor cells via cytoskeletal polarization

    Get PDF
    Tumors generate an immune-suppressive environment that prevents effective killing of tumor cells by CD8(+) cytotoxic T cells (CTL). It remains largely unclear upon which cell type and at which stage of the anti-tumor response mediators of suppression act. We have combined an in vivo tumor model with a matching in vitro reconstruction of the tumor microenvironment based on tumor spheroids to identify suppressors of anti-tumor immunity that directly act on interaction between CTL and tumor cells and to determine mechanisms of action. An adenosine 2A receptor antagonist, as enhanced by blockade of TIM3, slowed tumor growth in vivo. Engagement of the adenosine 2A receptor and TIM3 reduced tumor cell killing in spheroids, impaired CTL cytoskeletal polarization ex vivo and in vitro and inhibited CTL infiltration into tumors and spheroids. With this role in CTL killing, blocking A(2A)R and TIM3 may complement therapies that enhance T cell priming, e.g. anti-PD-1 and anti-CTLA-4

    Expression patterns of angiogenic and lymphangiogenic factors in ductal breast carcinoma in situ

    Get PDF
    The objective of this study was to investigate expression of various growth factors associated with angiogenesis and lymphangiogenesis and of their receptors in ductal carcinomas in situ of the breast (DCIS). We studied protein expression of basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF)-A, endothelin (ET)-1, and VEGF-C, and their receptors bFGF-R1, Flt-1, KDR, ETAR, ETBR, and Flt-4 immunohistochemically in 200 DCIS (pure DCIS: n=96; DCIS adjacent to an invasive component: n=104) using self-constructed tissue microarrays. Basic fibroblast growth factor-R1, VEGF-C, Flt-4, and ETAR were expressed in the tumour cells in the majority of cases, whereas bFGF and Flt-1 expression was rarely observed. VEGF-A, KDR, ET-1, and ETBR were variably expressed. The findings of VEGF-C and its receptor Flt-4 as lymphangiogenic factors being expressed in tumour cells of nearly all DCIS lesions and the observed expression of various angiogenic growth factors in most DCIS suggest that in situ carcinomas are capable of inducing angiogenesis and lymphangiogenesis. Moreover, we found a higher angiogenic activity in pure DCIS as compared to DCIS with concomitant invasive carcinoma. This association of angiogenic factors with pure DCIS was considerably more pronounced in the subgroup of non-high-grade DCIS (n=103) as compared with high-grade DCIS (n=94). Determination of these angiogenic markers may therefore facilitate discrimination between biologically different subgroups of DCIS and could help to identify a particularly angiogenic subset with a potentially higher probability of recurrence or of progression to invasiveness. For these DCIS, targeting angiogenesis may represent a feasible therapeutic approach for prevention of progression of DCIS to invasion

    Modeling of B cell Synapse Formation by Monte Carlo Simulation Shows That Directed Transport of Receptor Molecules Is a Potential Formation Mechanism

    Get PDF
    The formation of the protein segregation structure known as the “immunological synapse” in the contact region between B cells and antigen presenting cells appears to precede antigen (Ag) uptake by B cells. The mature B cell synapse consists of a central cluster of B cell receptor/Antigen (BCR/Ag) complexes surrounded by a ring of LFA-1/ICAM-1 complexes. In this study, we used an in silico model to investigate whether cytoskeletally driven transport of molecules toward the center of the contact zone is a potential mechanism of immunological synapse formation in B cells. We modeled directed transport by the cytoskeleton in an effective manner, by biasing the diffusion of molecules toward the center of the contact zone. Our results clearly show that biased diffusion of BCR/Ag complexes on the B cell surface is sufficient to produce patterns similar to experimentally observed immunological synapses. This is true even in the presence of significant membrane deformation as a result of receptor–ligand binding, which in previous work we showed had a detrimental effect on synapse formation at high antigen affinity values. Comparison of our model’s results to those of experiments shows that our model produces synapses for realistic length, time, and affinity scales. Our results also show that strong biased diffusion of free molecules has a negative effect on synapse formation by excluding BCR/Ag complexes from the center of the contact zone. However, synapses may still form provided the bias in diffusion of free molecules is an order-of-magnitude weaker than that of BCR/Ag complexes. We also show how diffusion trajectories obtained from single-molecule tracking experiments can generate insight into the mechanism of synapse formation

    Monte Carlo Investigation of Diffusion of Receptors and Ligands that Bind Across Opposing Surfaces

    Get PDF
    Studies of receptor diffusion on a cell surface show a variety of behaviors, such as diffusive, sub-diffusive, or super-diffusive motion. However, most studies to date focus on receptor molecules diffusing on a single cell surface. We have previously studied receptor diffusion to probe the molecular mechanism of receptor clustering at the cell–cell junction between two opposing cell surfaces. Here, we characterize the diffusion of receptors and ligands that bind to each other across two opposing cell surfaces, as in cell–cell and cell–bilayer interactions. We use a Monte Carlo method, where receptors and ligands are simulated as independent agents that bind and diffuse probabilistically. We vary receptor–ligand binding affinity and plot the molecule-averaged mean square displacement (MSD) of ligand molecules as a function of time. Our results show that MSD plots are qualitatively different for flat and curved interfaces, as well as between the cases of presence and absence of directed transport of receptor–ligand complexes toward a specific location on the interface. Receptor–ligand binding across two opposing surfaces leads to transient sub-diffusive motion at early times provided the interface is flat. This effect is entirely absent if the interface is curved, however, in this instance we observe sub-diffusive motion. In addition, a decrease in the equilibrium value of the MSD occurs as affinity increases, something which is absent for a flat interface. In the presence of directed transport of receptor–ligand complexes, we observe super-diffusive motion at early times for a flat interface. Super-diffusive motion is absent for a curved interface, however, in this case we observe a transient decrease in MSD with time prior to equilibration for high-affinity values

    A Model for the Interplay of Receptor Recycling and Receptor-Mediated Contact in T Cells

    Get PDF
    Orientation of organelles inside T cells (TC) toward antigen-presenting cells (APC) ensures that the immune response is properly directed, but the orientation mechanisms remain largely unknown. Structural dynamics of TC are coupled to dynamics of T-cell receptor (TCR), which recognizes antigen on the APC surface. Engagement of the TCR triggers its internalization followed by delayed polarized recycling to the plasma membrane through the submembrane recycling compartment (RC), which organelle shares intracellular location with the TC effector apparatus. TCR engagement also triggers TC-APC interface expansion enabling further receptor engagement. To analyze the interplay of the cell-cell contact and receptor dynamics, we constructed a new numerical model. The new model displays the experimentally observed selective stabilization of the contact initiated next to the RC, and only transient formation of contact diametrically opposed to the RC. In the general case wherein the TC-APC contact is initiated in an arbitrary orientation to the RC, the modeling predicts that the contact dynamics and receptor recycling can interact, resulting effectively in migration of the contact to the TC surface domain adjacent to the submembrane RC. Using three-dimensional live-cell confocal microscopy, we obtain data consistent with this unexpected behavior. We conclude that a TC can stabilize its contact with an APC by aligning it with the polarized intracellular traffic of TCR. The results also suggest that the orientation of TC organelles, such as the RC and the effector apparatus, toward the APC can be achieved without any intracellular translocation of the organelles
    corecore