5 research outputs found

    Proteome Analysis of Swine Macrophages after Infection with Two Genotype II African Swine Fever Isolates of Different Pathogenicity

    Get PDF
    Since the introduction of a highly pathogenic genotype II isolate of the African swine fever virus (ASFV) into Georgia in 2007, African swine fever (ASF) has gone panzootic. Outbreaks have been reported in Europe, Asia and, more recently, Latin America. Thus, ASFV has become a major threat to the pig industry worldwide, as broadly applicable vaccines are not available. While the majority of ASFV strains show high virulence in domestic pigs and wild boar, variations within the ASFV genome have resulted in the emergence of attenuated strains with low or moderate virulence. However, the molecular basis of the differences in virulence has not yet been discovered. To reveal virulence-associated protein expression patterns, we analysed the proteomes of the natural target cells of ASFV, primary porcine macrophages, after infection with two genotype II ASFV strains displaying high (Armenia 2008) and moderate (Estonia 2014) virulence using quantitative mass spectrometry. Very similar expression patterns were observed for the viral genes, and any differences were limited to the deletions within the Estonia 2014 genome. In addition to the canonical ASFV proteins, twelve novel protein products from recently described transcripts were confirmed in both isolates. Pathway analyses showed that both isolates evoked a similar host proteome response, despite their difference in virulence. However, subtle differences in the manipulation of the proteins involved in the proinflammatory response mediated by the MAPK14/p38 signalling cascade were observe

    Mass spectrometry-based Proteome analysis of porcine cells infected with African swine fever virus

    No full text
    ASFV, a highly contagious, pathogenic and lethal pathogen of swine, poses a major threat to domestic and wild suids worldwide as neither vaccines nor treatments are available. Compared to other well-characterized similarly complex viruses like herpesviruses or adenoviruses, the understanding of ASFV biology is poor. To improve the understanding of ASFV biology, following the establishment of a robust protocol for the isolation of primary monocyte-derived porcine macrophages (moMΦ) and their infection with ASFV for mass spectrometry (MS)-based proteome analysis was performed. Under both conditions, naïve and infected, the isolated cells showed cell type-specific characteristics like phagocytosis and antigen presentation and protein expression patterns, including the expression of swine leucocyte antigens and CD markers. Furthermore, moMΦ could be reproducibly infected with ASFV isolates of different genotypes and pathogenicity. The ASFV protein expression patterns in moMΦ correlate well with those observed in established cell lines at transcript and protein level. The expression of 27 ASFV proteins was confirmed at the protein level. Among them, 9 members of multi-gene families (MGF) and 12 novel open reading frames (nORFs) were recently predicted based on transcription start site mapping. The direct comparison of closely related ASFV genotype II isolates revealed no virulence-associated protein expression patterns beyond those expected based on the genome sequences of the isolates. Using different MS quantification strategies, it was shown that ASFV affects both static protein expression levels and protein synthesis. These changes in protein expression impact proteins and pathways known to be targeted by ASFV, including CD-markers, ER-stress and cell death pathways, and cellular antiviral responses. Beyond these observations that further validated the moMΦ infection model, novel effects of the ASFV infection on the cellular proteome were noticed. These effects include the decreased expression levels of cathepsins, especially cathepsins D (CTSD), H (CTSH) and L (CTSL) as well as the transient activation of MAPK14/p38 prior to its strong downregulation. In addition to MAPK14/p38 further members of the MAPK14/p38 signaling pathway, like MAPKAPK2, were affected by ASFV infection. As these modulations of the cellular proteome would in general result in decreased pro-inflammatory responses, it did stand out that the synthesis of interferon-response related genes including MX1 and ISG15 evaded the ASFV-induced global reduction of protein synthesis. In contrast, the synthesis of genes involved in RNA processing and splicing was significantly impaired. In total, the regulations of individual host proteins assessed in the context of the whole cellular proteome integrate well with each other and other cellular responses to ASFV infection and may help to improve the understanding of host-virus interactions. Overall, this thesis provides novel insights into the expression of ASFV-encoded ORFs of different isolates and the host response to ASFV infection. It points out that the current knowledge of the ASFV coding capacity, temporal protein expression patterns, protein functionality, post-translational modifications and host interactions is still sketchy as many aspects of ASFV replication have yet to be understood. The established moMΦ-model to study ASFV infections in vitro provides a powerful tool for future applications to increase the understanding of ASFV biology

    Mass-Spectrometric Evaluation of the African Swine Fever Virus-Induced Host Shutoff Using Dynamic Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC)

    No full text
    African swine fever is a viral disease of swine caused by the African swine fever virus (ASFV). Currently, ASFV is spreading over the Eurasian continent and threatening global pig husbandry. One viral strategy to undermine an efficient host cell response is to establish a global shutoff of host protein synthesis. This shutoff has been observed in ASFV-infected cultured cells using two-dimensional electrophoresis combined with metabolic radioactive labeling. However, it remained unclear if this shutoff was selective for certain host proteins. Here, we characterized ASFV-induced shutoff in porcine macrophages by measurement of relative protein synthesis rates using a mass spectrometric approach based on stable isotope labeling with amino acids in cell culture (SILAC). The impact of ASFV infection on the synthesis of >2000 individual host proteins showed a high degree of variability, ranging from complete shutoff to a strong induction of proteins that are absent from naïve cells. GO-term enrichment analysis revealed that the most effective shutoff was observed for proteins related to RNA metabolism, while typical representatives of the innate immune system were strongly induced after infection. This experimental setup is suitable to quantify a virion-induced host shutoff (vhs) after infection with different viruses

    Comparison of the Proteomes of Porcine Macrophages and a Stable Porcine Cell Line after Infection with African Swine Fever Virus

    No full text
    African swine fever virus (ASFV), causing an OIE-notifiable viral disease of swine, is spreading over the Eurasian continent and threatening the global pig industry. Here, we conducted the first proteome analysis of ASFV-infected primary porcine monocyte-derived macrophages (moMΦ). In parallel to moMΦ isolated from different pigs, the stable porcine cell line WSL-R was infected with a recombinant of ASFV genotype IX strain “Kenya1033”. The outcome of the infections was compared via quantitative mass spectrometry (MS)-based proteome analysis. Major differences with respect to the expression of viral proteins or the host cell response were not observed. However, cell-specific expression of some individual viral proteins did occur. The observed modulations of the host proteome were mainly related to cell characteristics and function. Overall, we conclude that both infection models are suitable for use in the study of ASFV infection in vitro
    corecore