27 research outputs found

    Transcriptome-proteome compendium of the Antarctic krill (Euphausia superba): Metabolic potential and repertoire of hydrolytic enzymes

    Get PDF
    The Antarctic krill (Euphausia superba Dana) is a keystone species in the Southern Ocean that uses an arsenal of hydrolases for biomacromolecule decomposition to effectively digest its omnivorous diet. The present study builds on a hybrid-assembled transcriptome (13,671 ORFs) combined with comprehensive proteome profiling. The analysis of individual krill compartments allowed detection of significantly more different proteins compared to that of the entire animal (1,464 vs. 294 proteins). The nearby krill sampling stations in the Bransfield Strait (Antarctic Peninsula) yielded rather uniform proteome datasets. Proteins related to energy production and lipid degradation were particularly abundant in the abdomen, agreeing with the high energy demand of muscle tissue. A total of 378 different biomacromolecule hydrolysing enzymes were detected, including 250 proteases, 99 CAZymes, 14 nucleases and 15 lipases. The large repertoire in proteases is in accord with the protein-rich diet affiliated with E. superba’s omnivorous lifestyle and complex biology. The richness in chitin-degrading enzymes allows not only digestion of zooplankton diet, but also the utilization of the discharged exoskeleton after moulting

    Benzoate mediates the simultaneous repression of anaerobic 4-methylbenzoate and succinate utilization in Magnetospirillum sp. strain pMbN1

    Get PDF
    Background: At high concentrations of organic substrates, microbial utilization of preferred substrates (i.e., supporting fast growth) often results in diauxic growth with hierarchical substrate depletion. Unlike the carbon catabolite repression-mediated discriminative utilization of carbohydrates, the substrate preferences of non-carbohydrate-utilizing bacteria for environmentally relevant compound classes (e.g., aliphatic or aromatic acids) are rarely investigated. The denitrifying alphaproteobacterium Magnetospirillum sp. strain pMbN1 anaerobically degrades a wide variety of aliphatic and aromatic compounds and is unique for anaerobic degradation of 4-methylbenzoate. The latter proceeds via a distinct reaction sequence analogous to the central anaerobic benzoyl-CoA pathway to intermediates of central metabolism. Considering the presence of these two different anaerobic "aromatic ring degrading" pathways, substrate preferences of Magnetospirillum sp. strain pMbN1 were investigated. Anaerobic growth and substrate consumption were monitored in binary and ternary mixtures of 4-methylbenzoate, benzoate and succinate, in conjuction with time-resolved abundance profiling of selected transcripts and/or proteins related to substrate uptake and catabolism. Results: Diauxic growth with benzoate preference was observed for binary and ternary substrate mixtures containing 4-methylbenzoate and succinate (despite adaptation of Magnetospirillum sp. strain pMbN1 to one of the latter two substrates). On the contrary, 4-methylbenzoate and succinate were utilized simultaneously from a binary mixture, as well as after benzoate depletion from the ternary mixture. Apparently, simultaneous repression of 4-methylbenzoate and succinate utilization from the ternary substrate mixture resulted from (i) inhibition of 4-methylbenzoate uptake, and (ii) combined inhibition of succinate uptake (via the two transporters DctPQM and DctA) and succinate conversion to acetyl-CoA (via pyruvate dehydrogenase). The benzoate-mediated repression of C4-dicarboxylate utilization in Magnetospirillum sp. strain pMbN1 differs from that recently described for "Aromatoleum aromaticum" EbN1 (involving only DctPQM). Conclusions: The preferential or simultaneous utilization of benzoate and other aromatic acids from mixtures with aliphatic acids may represent a more common nutritional behavior among (anaerobic) degradation specialist than previously thought. Preference of Magnetospirillum sp. strain pMbN1 for benzoate from mixtures with 4-methylbenzoate, and thus temporal separation of the benzoyl-CoA (first) and 4-methylbenzoyl-CoA (second) pathway, may reflect a catabolic tuning towards metabolic efficiency and the markedly broader range of aromatic substrates feeding into the central anaerobic benzoyl-CoA pathway

    Plasticity-Related Gene 5 Is Expressed in a Late Phase of Neurodifferentiation After Neuronal Cell-Fate Determination

    Get PDF
    During adult neurogenesis, neuronal stem cells differentiate into mature neurons that are functionally integrated into the existing network. One hallmark during the late phase of this neurodifferentiation process is the formation of dendritic spines. These morphological specialized structures form the basis of most excitatory synapses in the brain, and are essential for neuronal communication. Additionally, dendritic spines are affected in neurological disorders, such as Alzheimer's disease or schizophrenia. However, the mechanisms underlying spinogenesis, as well as spine pathologies, are poorly understood. Plasticity-related Gene 5 (PRG5), a neuronal transmembrane protein, has previously been linked to spinogenesis in vitro. Here, we analyze endogenous expression of the PRG5 protein in different mouse brain areas, as well as on a subcellular level. We found that native PRG5 is expressed dendritically, and in high abundance in areas characterized by their regenerative capacity, such as the hippocampus and the olfactory bulb. During adult neurogenesis, PRG5 is specifically expressed in a late phase after neuronal cell-fate determination associated with dendritic spine formation. On a subcellular level, we found PRG5 not to be localized at the postsynaptic density, but at the base of the synapse. In addition, we showed that PRG5-induced formation of membrane protrusions is independent from neuronal activity, supporting a possible role in the morphology and stabilization of spines

    The enigmatic nucleus of the marine dinoflagellateProrocentrum cordatum

    Get PDF
    The marine, bloom-forming dinoflagellateProrocentrum cordatum CCMP 1329 (formerly P. minimum) has a genome atypical of eukaryotes, with a large size of ∼4.15 Gbp, organized in plentiful, highly condensed chromosomes and packed in a dinoflagellate-specificnucleus (dinokaryon). Here, we apply microscopic and proteogenomic approaches to obtain new insights into this enigmatic nucleus of axenic P. cordatum. High-resolution focused ion beam/scanning electron microscopy analysis of the flattenednucleus revealed highest density of nuclear pores in the vicinity of the nucleolus, a total of 62 tightly packed chromosomes (∼0.4-6.7 μm3), and interaction of several chromosomes with the nucleolus and other nuclear structures. A specificprocedure for enriching intact nuclei was developed to enable proteomic analyses of soluble and membrane protein-enriched fractions. These were analyzed with geLC and shotgun approaches employing ion-trap and timsTOF (trapped-ion-mobility-spectrometry time-of-flight)mass spectrometers, respectively. This allowed identificationof 4,052 proteins (39% of unknown function), out of which 418 were predicted to serve specificnuclear functions; additional 531 proteins of unknown function could be allocated to the nucleus. Compaction of DNA despite very low histone abundance could be accomplished by highly abundant major basic nuclear proteins (HCc2-like). Several nuclear processes including DNA replication/repair and RNA processing/splicing can be fairly well explained on the proteogenomic level. By contrast, transcription and composition of the nuclear pore complex remain largely elusive. One may speculate that the large group of potential nuclear proteins with currently unknown functions may serve yet to be explored functions in nuclear processes differingfrom those of typical eukaryotic cells

    CEDAR, an online resource for the reporting and exploration of complexome profiling data

    Get PDF
    Complexome profiling is an emerging ‘omics’ approach that systematically interrogates the composition of protein complexes (the complexome) of a sample, by combining biochemical separation of native protein complexes with mass-spectrometry based quantitation proteomics. The resulting fractionation profiles hold comprehensive information on the abundance and composition of the complexome, and have a high potential for reuse by experimental and computational researchers. However, the lack of a central resource that provides access to these data, reported with adequate descriptions and an analysis tool, has limited their reuse. Therefore, we established the ComplexomE profiling DAta Resource (CEDAR, www3.cmbi.umcn.nl/cedar/), an openly accessible database for depositing and exploring mass spectrometry data from complexome profiling studies. Compatibility and reusability of the data is ensured by a standardized data and reporting format containing the “minimum information required for a complexome profiling experiment” (MIACE). The data can be accessed through a user-friendly web interface, as well as programmatically using the REST API portal. Additionally, all complexome profiles available on CEDAR can be inspected directly on the website with the profile viewer tool that allows the detection of correlated profiles and inference of potential complexes. In conclusion, CEDAR is a unique, growing and invaluable resource for the study of protein complex composition and dynamics across biological systems

    Proteomic and genetic studies of aromatic compund degradation in "Aromatoleum aromaticum" strain EbN1

    No full text
    Aromatic compounds are widely distributed and abundant in nature being main constituents of crude oil and important products of higher plants. The denitrifying Aromatoleum aromaticum strain EbN1 utilizes a wide range of aromatic and nonaromatic compounds under anoxic and oxic conditions. The recently determined genome sequence revealed corresponding degradation pathways and predicted a fine-tuned regulatory network.This work reports on the analysis of substrate specific regulation of anaerobic and aerobic degradation pathways in "A. aromaticum" strain EbN1 grown with 17 different aromatic and aliphatic compounds under oxic and anoxic conditions applying differential proteomics (2D DIGE). The comprehensive approach enabled the discovery of so far unaccounted catabolic capacities and their subsequent elucidation on the physiological, molecular and regulatory level. The adaptation of strain EbN1 to solvent stress was investigated on the physiological and proteomic level since strain EbN1 is able to degrade several toxic alkylbenzenes and alkylphenols. In addition, a genetic system for strain EbN1 is described enabling unmarked deletion mutagenesis

    Anaerobic Degradation of p-Ethylphenol by “Aromatoleum aromaticum” Strain EbN1: Pathway, Regulation, and Involved Proteins▿ †

    No full text
    The denitrifying “Aromatoleum aromaticum” strain EbN1 was demonstrated to utilize p-ethylphenol under anoxic conditions and was suggested to employ a degradation pathway which is reminiscent of known anaerobic ethylbenzene degradation in the same bacterium: initial hydroxylation of p-ethylphenol to 1-(4-hydroxyphenyl)-ethanol followed by dehydrogenation to p-hydroxyacetophenone. Possibly, subsequent carboxylation and thiolytic cleavage yield p-hydroxybenzoyl-coenzyme A (CoA), which is channeled into the central benzoyl-CoA pathway. Substrate-specific formation of three of the four proposed intermediates was confirmed by gas chromatographic-mass spectrometric analysis and also by applying deuterated p-ethylphenol. Proteins suggested to be involved in this degradation pathway are encoded in a single large operon-like structure (∼15 kb). Among them are a p-cresol methylhydroxylase-like protein (PchCF), two predicted alcohol dehydrogenases (ChnA and EbA309), a biotin-dependent carboxylase (XccABC), and a thiolase (TioL). Proteomic analysis (two-dimensional difference gel electrophoresis) revealed their specific and coordinated upregulation in cells adapted to anaerobic growth with p-ethylphenol and p-hydroxyacetophenone (e.g., PchF up to 29-fold). Coregulated proteins of currently unknown function (e.g., EbA329) are possibly involved in p-ethylphenol- and p-hydroxyacetophenone-specific solvent stress responses and related to other aromatic solvent-induced proteins of strain EbN1

    What’s the Difference? 2D DIGE Image Analysis by DeCyder versus SameSpots

    No full text
    The efficiency and reproducibility of two-dimensional difference gel electrophoresis (2D DIGE) depends on several crucial steps: (i) adequate number of replicate gels, (ii) accurate image acquisition, and (iii) statistically confident protein abundance analysis. The latter is inherently determined by the image analysis system. Available software solutions apply different strategies for consecutive image alignment and protein spot detection. While DeCyderTM performs spot detection on single gels prior to the alignment of spot maps, SameSpotsTM completes image alignment in advance of spot detection. In this study, the performances of DeCyderTM and SameSpotsTM were compared considering all protein spots detected in 2D DIGE resolved proteomes of three different environmental bacteria with minimal user interference. Proteome map-based analysis by SameSpotsTM allows for fast and reproducible abundance change determination, avoiding time-consuming, manual spot matching. The different raw spot volumes, determined by the two software solutions, did not affect calculated abundance changes. Due to a slight factorial difference, minor abundance changes were very similar, while larger differences in the case of major abundance changes did not impact biological interpretation in the studied cases. Overall, affordable fluorescent dyes in combination with fast CCD camera-based image acquisition and user-friendly image analysis still qualify 2D DIGE as a valuable tool for quantitative proteomics
    corecore